

OAM Software Architecture Design
CS 446 – Spring 2001

GROUP #1
Troy Gonsalves 97083748

tgonsalves@student.math.uwaterloo.ca

Chris Mennie 97024327
camennie@student.math.uwaterloo.ca

David Tapuska 97084449

dfapusk@student.math.uwaterloo.ca

May 28, 2001

mailto:Tgonsalves@student.math.uwaterloo.ca
mailto:camennie@student.math.uwaterloo.ca
mailto:dfapusk@student.math.uwaterloo.ca

 2

1.0 ABSTRACT .. 4

2.0 INTRODUCTION... 5

2.1 Purpose... 5

2.2 Scope... 5

2.3 Document Conventions ... 5

3.0 ARCHITECTURE.. 6

3.1 Potential Architectural Styles .. 6

3.2 Summary of Potential Architectures ... 8

3.3 Analysis .. 9

3.4 System-level Architecture... 9

3.5 Component-level Architecture ... 12

3.6 Examples of Component Interaction... 14

4.0 EXTERNAL INTERFACES ... 17

4.1 The Communication Subsystem .. 17

4.2 Database ... 17

4.3 CU ... 18

4.4 Print Server.. 18

5.0 FEASIBILITY ANALYSIS ... 19

5.1 MySQL Database .. 19

5.2 Communication ... 19

5.3 Using Tcl/Tk for the GUI.. 20

6.0 ABILITY TO EVOLVE... 21

6.1 Performance Enhancements .. 21

 3

6.2 Scalability... 21

6.3 Adding and Enhancing Features ... 21

6.4 Internationalization... 22

6.5 Distribution of Components ... 22

6.6 Multiple UI Formats ... 22

7.0 REFERENCES.. 23

8.0 DATA DICTIONARY... 24

 4

1.0 Abstract

This document discusses the architectural style used to design the SX4 Operations,
Administration and Maintenance (OAM) Software System. Before describing the
proposed architecture, this document provides a comparison of several potential
architectural styles including: Pipes and Filters, Layered, and Client-Server Styles.
An OAM Software System based on each of these architectures is described in terms
of its modifiability, ability to evolve and feasibility. Additional criteria include: the
potential for the use of standardized interfaces; the ease of testing; and, the
satisfaction of the system requirements (as specified in the document CS445
Software Requirements Specification: OAM Software for SX4).

The conclusion of this report is that a combination of the Client-Server and Layered
architectures is best suited for the OAM Software System. Within this hybrid
architecture, modules interact in keeping with the Client-Server style; however,
decomposing the Client or Server modules reveals an internally layered architecture.

Feasibility studies have been performed to ensure implementation of the proposed
architecture can be accomplished with readily available tools and technologies. The
client side could be implemented using Tcl/Tk, with the aid of a GUI builder.
Communication could be handled using TCP/IP sockets, and messages formed in
XML. The database could use a readily available relational database, MySQL.

Evolution requirements have been present throughout the entire architecture stage.
Various scenarios of how the system can adapt and react to such changes is
presented. It is concluded that since the proposed design is highly modularized and
distributed, the system is relatively malleable.

The design team believes that the hybrid architecture proposed will maximize the
modifiability, evolvability and feasibility of the OAM Software System.

 5

2.0 Introduction

2.1 Purpose

The purpose of this document is to present an architectural style to the client for
approval. The design chosen is argued to meet the system requirements, while
allowing modifiability and customizability. The document presents the architecture
view from a Top Level, while looking into a few interesting components that have
sub-architectures of their own. The intended audience is someone who is familiar
with architectural styles and has read the requirements and specifications for the
system.

2.2 Scope

The main sections to the report are: Architecture, External Interfaces, Ability to
Evolve, and Feasibility.

The Architecture section discusses three different approaches to the design of the
system. Each approach is presented and then summarized in a table. The section
continues on to take a hybrid approach, combining Client-Server and Layered
architectures for a proposed system design.

The External Interfaces section presents what external interfaces will be seen to the
external applications, such as the UI and CU interfaces.

The Feasibility section provides an overview of an intended implementation.
Technologies used for the various components of the software system are discussed
in this section, with reasons for choosing them and advantages they provide.

The Ability to Evolve section discusses how the proposed system can evolve and
adapt to future requirements placed on the system. A discussion of the anticipated
future requirements of the system is presented. The benefits of the proposed
architecture, such as modularization and distribution allow changes to the system to
occur in centralized areas and to have relatively small effect on the number of
modules.

2.3 Document Conventions

The document has the convention that the first occurrence of technical jargon is
italicized, and is inserted into the Data Dictionary. [Section 8]

Architecture diagrams in this document follow the following conventions:

• Events contain all data relevant to the event.
• Data is sent only in response to an event.
• System Components are those components of the system for which the

development team is responsible.
• 3rd Party Components are those components that external parties are

responsible for.

 6

3.0 Architecture

3.1 Potential Architectural Styles

3.1.1 Pipes and Filters
In a pipe and filter style, each component has a set of inputs and a set of outputs. A
component reads streams of data on its inputs and produces streams of data on its
outputs, delivering a complete instance of the result in a standard order [Shaw and
Garlan].

3.1.1.1 Modularity
The division of the OAM Software System into filters is both logical and simple for
data sent to the database or CU. However, the user interface would be difficult to
implement as a filter since it is highly interactive.

3.1.1.2 Interfaces
The issue of paramount concern is the difficulty the development team will face
when trying to implement an interactive user interface as a filter. The difficultly
with implementing interactive components is a known problem with the pipes and
filters style.

3.1.1.3 System Evolution
As long as the filters are sufficiently independent, the system would be highly
evolvable.

3.1.1.4 Ease of Testing

The independent nature of the filters in this style allow for the individual testing of
each filter. Hence, thorough regression and stress tests can be performed on each
component.

3.1.1.5 Satisfaction of SRS
The SRS states that only one operator needs to be supported; hence, it is possible to
create a system using the pipes and filters style.

3.1.1.6 Overall Feasibility

It is the belief of the design team that the versatility of the user interface and the
scalability of the backend components are the most important aspect of the OAM
Software System. Although the use of a pipes and filters architectural style would
yield a highly scalable backend, the incorporation of the user interface is poor.

3.1.2 Layered Architecture
A layered system is organized hierarchically, each layer providing service to the
layer above it and serving as a client to the layer below. The connectors are defined

 7

by protocols that determine how the layers will interact. Topological constraints
include limiting interactions to adjacent layers. [Shaw and Garlan]

3.1.2.1 Modularity
It seems natural to divide the OAM Software System into various layers. These
layers would include; a user interfaces layer; an event handler; a core processor; and
finally, an external interfaces layer for communicating with the database, printer and
CU.

3.1.2.2 Interfaces
Standard interfaces would be required between the layers and interactions between
non-adjacent layers (bridging) would be strongly discouraged.

3.1.2.3 System Evolution

Provided there is little bridging of layers, the system’s ability to evolve of the system
is excellent. Each layer would only be dependent on its upper and lower layer
interfaces to communicate. This reduces the magnitude of the changes required to
modify or replace a layer.

3.1.2.4 Ease of Testing
Testing the lower levels of the architecture would not be difficult since each function
should be relatively simple. Testing of the higher levels may be difficult since their
dependence on the lower layers creates a tree of dependencies; if the tree is
sufficiently large, locating bugs becomes difficult.

3.1.2.5 Satisfaction of SRS
The SRS states that only one operator needs to be supported; hence, it is possible to
create a system using a layered architecture.

3.1.2.6 Overall feasibility
If the system is constrained to allow at most one Operator then a layered architecture
is a very reasonable style.

3.1.3 Client-Server Architecture
In a client server style, components are abstracted into ones that provide black-box
services and ones that request those services. Components that provide services are
called servers; components that request services are called clients. The two types of
components are linked via a connector, a network that allows access to remote
servers. [CS 446 Course Notes]

3.1.3.1 Modularity
The division of the system into client and server modules is natural. Access to the
database and printers can be placed in one server module. While the portions of the
system involve in interfacing with the Operator could be placed in a client module.
The only oddity is that the CU both requests and provides services. To resolve this a

 8

special component called a Handler is introduced; this component will facilitate
requests from the CU and provide services to other components.

3.1.3.2 Interfaces
The use of a standardized protocol would allow components to communicate.
Making the components event-driven and using message-passing seems like a
natural way to of providing generic interfaces between components.

3.1.3.3 System Evolution
The separation of the system into clients and servers, allows each component to be
modified with minimal effect on other components.

Even though the SRS calls for at most one operator, a likely enhancement would be
to allow multiple operators to use the system. This style naturally lends itself to
extension into a multi-user environment.

Another important capability would be the ability to operate as a distributed system.
The Client-Server architecture inherently incorporates the fact that components may
be on different machines (assuming the links between components can communicate
across a network).

3.1.3.4 Ease of Testing

The components of this style can be tested individually because of there independent
nature. Hence, thorough regression and stress tests can be performed on each
component.

3.1.3.5 Satisfaction of SRS
The SRS states that only one operator needs to be supported. It is possible to create
such a system using the client-server style; the system would simply have one
Operator Client.

3.1.3.6 Overall Feasibility
The client-server style satisfies the requirements of the SRS while at the same time
allowing the components of the system to be both highly adaptive and easily
distributed.

3.2 Summary of Potential Architectures
The table below summarized the descriptions of each of the potential architectures.
Each style is ranked from first to third in terms each of the attributes described in the
previous section; the most import attribute being the “Overall Feasibility” of the
style.

Style Modularity Interfaces System
Evolution

Ease of
Testing

Satisfaction
of SRS

Overall
Feasibility

Pipes and
Filters

3 3 2 1 1 3

Layered 1 2 2 3 1 2
Client-Server 2 1 1 1 1 1

 9

3.3 Analysis

The client-server style placed first in all categories except modularity. The problem
with modularizing the OAM Software System into clients and servers was the CU,
which could be considered both a client and a server. As mentioned above, a handler
will be used to resolve this issue.

The pipes and filters style did poorly overall because of the problems with creating
an interactive user interface using a filter.

The layered architecture did well, because it seems naturally to consider the OAM
Software System as a series of layers; hence, a layered architecture will be used for
the internal structure of some components.

3.4 System-level Architecture

Note: As shown in the system-level view of the architecture the OAM Software
System can be considered simultaneously heterogeneous because it is both Client-
Server and Layered.

3.4.1 Operator Terminal
The Operator Terminal is an abstraction of the physical machine into which the
Operator would enter information (e.g. a personal computer or a workstation). This
module is responsible for displaying data to the Operator and receiving input from
the Operator.

 10

The Operator Terminal can send events to and receive responses (data) from the UI
Client (e.g. send an Add Customer event with the corresponding data, and eventually
receive a response containing the new customer’s ID). The Operator Terminal can
also receive events from the UI Client (e.g. login prompt, error message) and send
data to the UI Client in response to these events.

3.4.2 UI Client
The UI Client is responsible facilitating communication between the Operator
Terminal the OAM Server.

3.4.3 (Billing) Daemon
The (Billing) Daemon is another type of client and thus it is similar to the UI Client.
The significant difference is that this module is a daemon, meaning that is an
automated process that executes a set of commands. Currently this modules only
responsibility is to periodically send an event to the OAM Server telling it to print
the current bills for all customers. Note however, that the responsibilities of this
module may be increased to assist in the automated testing of the system or in any
other automated or periodic functions the system may require as it evolves (this is
why the word “Billing” is in brackets in this modules name).

3.4.4 OAM Server
The OAM Server’s responsibility is to carryout all client requests. This may require
accessing the Database, Print Server or sending an event to the CU Handler, the UI
Client or the (Billing) Daemon. The OAM Server may also need to return a response
(in the form of data or an event) to the requesting client.

It is the OAM Server’s responsibility to maintain the consistence of the exchange
information stored in the Database and cached on each CU.

When an error event is received, the server is responsible for sending an error event
to all active UI Clients (and hence to all Operators currently logged into the system)
The error event may also be sent to the (Billing) Daemon if necessary. If there are
no active UI Clients at the time of the error and the error must be viewed by an
Operator to be resolved then the OAM Server must record the error and send it to the
next UI Client that becomes active (i.e. to the next Operator that logs in)

3.4.5 Database
The Database is a Third Party Component responsible for storing all persistent
information required by the OAM Software System. The database must support
atomic operations, also known as transactions.

 11

3.4.6 Print Server
The Print Server is a Third Party Component. The Print Server receives requests to
output customer bills; typically, this will involve printing the bills. Note that this
module in addition to printing the information it receives could also output
information via email (for example). In fact, despite its name, this module does not
necessarily print the information it receives at all; this would of course imply that the
information was output by some other means (e.g. email).

3.4.7 CU Handler
The CU Handler is the proxy between the OAM Server, and the CU that allows the
CU to act as both a client and a server. All messages to and from the CU must go
through that a handler.

3.4.8 CU
The CU is a Third Party Component that provides an interface to the hardware
components of the SX4 System. For a more detailed description of the CU see [CS
445 Project Introduction, CS 445 Software Interface Description]

 12

3.5 Component-level Architecture

Note: The Communication Subsystem, Operator Terminal, UI Client, (Billing)
Daemon, OAM Server, Database, Print Server, CU Handler, and CU are described in
the previous section on the [Section 3.4] System-level Architecture.

3.5.1 UI Client
The UI Client can be decomposed two (layered) components, User Interface Forms
and an Event Handler.

 13

3.5.1.1 User Interface Forms
The User Interface Forms module acts as an interface between the UI Client’s Event
Handler and the Operator Terminal. This involves formatting the display that is
output by the Operator Terminal and altering this display when events and data are
received from the Event Handler. The module must also passes events and data from
the Operator Terminal to the Event Handler.

3.5.1.2 Event Handler
The Event Handler decides what type of message is sent to the OAM Server in
response to an event received from a User Interface Form. For example, pressing a
button to add a customer results in an “Add Customer” event being sent to the OAM
Server. The Event Handler then waits for the OAM Server to respond to this event
with either an ID number for the new customer or and error message.

The Event Handler may also receive unsolicited events from the OAM Server such
as error messages. Upon receipt of such messages, the Event Handler should display
the event on the Operator Terminal by using User Interface Forms.

3.5.2 OAM Server
The OAM Server contains two main modules, the Dispatcher and the Connection
Worker.

The Worker is active from the point the Operator begins their session and until
he/she ends their session.

3.5.2.1 Dispatcher
The Dispatcher is a lightweight module whose primary function is to act as an
administrator or a nexus for client processes.

The Dispatcher is responsible for receiving initial requests from the clients and for
allocating a Connection Worker to service that particular client. The key idea behind
the Dispatcher is to delegate work, so that it does not become a bottleneck.

The Dispatcher is also responsible for handling any error messages received from the
CU Handler. These error messages are then sent to all active Connection Workers. If
there are no active Connection Workers then the Dispatcher records the error and
sends it to the Connection Worker created when a login request is received from a UI
Client.

3.5.2.2 Connection Worker

The internal architecture of the Connection Worker contains three layers, Decision
Maker, Complex Operations, and Simple Operations.

3.5.2.2.1 Decision Maker
The Decision Maker handles all communication between the OAM Server and a
client. Once created a Connection Worker’s Decision Maker is the only component
that can communicate with the client.

 14

The Decision Maker is also responsible for deciding which Complex Operations are
performed in response to an event from the Connection Worker’s client or the
Dispatcher.

3.5.2.2.2 Complex Operations

A Complex Operation is a sequence of one or more Simple Operations. These
Simple Operations may be wrapped in a transaction. For example, consider Adding
a Subscription, this could be implemented as a Complex Operations involving three
Simple Operations, namely Allocate Phone Number, Allocate Line Card and Update
Customer.

3.5.2.2.3 Simple Operations

The Simple Operations layer implements basic operations and provides an abstract
interface to the Database, Print Server, and CU Handler.

3.6 Examples of Component Interaction
This section will trace through a few realistic examples to demonstrate how the
components of the OAM Software System interact.

 15

3.6.1 Adding a Customer

Operator Login
Assume that the OAM Server and Database have already been started.

1) The UI Client starts; its Event Handler sends an event to the User Interface Form

to display the login dialog.
2) User Interface Forms formats the display and sends it to the Operator Terminal,

which displays the login prompt; the Operator enters his/her user name and
password into the given form and presses the "Login" button.

3) A login request is passed to the Event Handler from the User Interface Form.
4) The Event Handler contacts the Dispatcher with a login request.
5) Dispatcher creates a Connection Worker for the client and forwards the login

request.
6) Connection Worker sends a validate request to Complex Operations.
7) A Complex Operation results in three Simple Operations: connect, validate and

disconnect.
8) Simple Operations connect to, validate the user's name and password and

disconnect from the Database
9) The Database responds with success.
10) A success of login message is returned to the calling Complex Operation
11) A success of login message is returned to the calling Decision Maker.
12) A success of login message is returned to the UI Client's Event Handler.

 16

3.6.2 Displaying an Error Message Sent from the CU

“UpdateDB” message sent from CU with an error code set
Assume the CU already has acquired a Connection Worker.

1) CU sends an updateDB event to its CU Handler
2) CU Handler sends updateDB message its Connection Worker
3) Decision Maker then sends the message to the Complex Operations layer
4) The Complex Operation results in three Simple Operations: connect, update and

disconnect.
5) Simple Operations connect to, update and disconnect from the Database
6) Database responds with success
7) Simple Operations then responds to Complex Operations with success
8) Complex Operations then responds to the Decision Maker with success
9) The Connection Worker then responds to the CU Handler with a success

message for updateDB event
10) The CU Handler detects that an error bit has been set in the updateDB message

from the CU and sends an error message is sent to the Dispatcher
11) The error message is propagated to each Connection Worker
12) For each Connection Worker, the Decision Maker then sends an error message to

each Client Event Handler
13) The error message is send to the User Interface Forms to format the display of

the error
14) The error message is displayed on the Operator Terminal

 17

4.0 External Interfaces

4.1 The Communication Subsystem
Components use message-passing over the communication subsystem to interact
with one another. This subsystem can be separated into two pieces, the channel and
the massage format. The implementation details of both of these pieces should be
hidden from components using the communication subsystem.

The communication subsystem is responsible for performing validity checks on all
messages. This check can be performed either before of after the message is
transferred as long as the check is performed before making the message available to
its recipient.

4.1.1 The Channel
The abstraction of the channel increases the ease with which the system can be
ported to different platforms. That is, to port the communication channel to a
specific platform the development team need only provide an implementation of the
channel’s interface that will work on that platform.

One desirable property of the channel would be that it allows components to
communicate over a network so that the OAM Software System can function as a
distributed system.

4.1.2 Message Format
The message format must be generic enough to encode both data and events, yet it
should be concise enough to allow for the efficient validation of a given message.

The message format should also be designed such that components can communicate
over a channel despite differences in the programming language in which each
component is written or the format in which local data is stored (e.g. little endian vs.
big endian representation of a binary number)

4.2 Database

The OAM Server communicates with the Database through the Simple Operations
layer of a Connection Worker. When the Decision Maker layer of a Connection
Worker receives an event it decides which Complex Operation(s) to perform and
then it executes them. If a Complex Operation requires a connection to the database,
it makes three or more calls to the Simple Operation layer, namely, one call to
establish a connection, one or more calls to execute various queries, and finally one
call to close the connection.

 18

4.3 CU
The CU interacts with the OAM through the CU Handler module. This module
maintains a persistent connection with the CU using message queues, as specified in
CS 445 Software Interface Description. All communication to and from the CU is
handled through the CU Handler.

4.4 Print Server
The OAM Server communicates with the Print Server through the Simple Operations
layer. When something needs to be output, a Complex Operation will be executed.
This Complex Operation will begin by calling a Simple Operations to format the
information to be output, then on to connect to the Print Server and send the
information to be output. The information sent will be a printable data type such as
text or a file (for example a PDF). The Print Server will send a response to the
Simple Operation layer in response to the output request. Once this response is
received, the Simple Operation can assume that the output was successfully
completed. Control will then return to the Complex Operation which will make one
more call to the Simple Operations layer to disconnect from the Printer Server.

 19

5.0 Feasibility Analysis

Some of the components outlined in the previous sections are dependent on the
certain requirements being implemented. This section will describe a number of
technologies that can be used to implement these requirements.

5.1 MySQL Database
The Database is a vital component to the OAM Software System. To allow easy
storage and retrieval of the OAM information, the use of MySQL as database was
explored.

MySQL supports the SQL standard, which is one of the most popular and common
database standards. Should the need arise to change to a different database, the use of
SQL for the Database in the OAM Software System will make the transition simple.

MySQL is available in both binary and source forms, for a number of common
operating systems. This gives the OAM Software System a large degree of flexibility
in terms of the platforms on which it can execute. There is also, abundant
documentation on http://www.mysql.com which has aided the development team in
installing and configuring MySQL.

There are a number of APIs available in multiple languages that can be used to
communicate with a MySQL server. For example, there is an API for C++ and one
for Java.

Finally, like most database systems, MySQL is thread safe, supports transactions and
has a number of security features.

5.2 Communication

5.2.1 TCP/IP Sockets as Channels
If TCP/IP sockets are used to implement channels then the development team will
have relatively easy time creating concrete implementations of the channel’s
interface. This is because most modern operating systems include TCP/IP and
network support.

In addition, because TCP/IP sockets will allow the components to communicate over
a network the OAM Software System can operate as a distributed system

5.2.2 Using XML as the Message Format
XML is fully capable of meeting all the requirements specified for the message
format. It can be used to encode both events and data and there are a number of high-
speed validators and parsers available in a wide varity of languages (including C++,
Java and even Tcl/Tk).

http://www.mysql.com/

 20

An additional advantage to using XML that the language is text-based, this will
simplify debugging and may assist the testing team in automating their tests.

5.3 Using Tcl/Tk for the GUI

The UI Client could be implemented using Tcl/Tk. This language was chosen due to
its wide availability on a variety of platforms. The language is also relatively simple
to learn, yet highly versatile. This should allow the development team to create a
robust user interface.

Below is a prototype of the Add Customer form.

The SpecTcl GUI builder will be used to assist in the initial layout of Tcl/Tk forms
in the hope that this will speed up the development of the user interface.

 21

6.0 Ability to Evolve

6.1 Performance Enhancements
Performance is arguably the most important aspect of a system. The following is a
list of methods for improving the speed of the system:
• Compress messages; which will decrease data transfer time, but increase data

processing time (i.e. the messages will have to be decompressed at some point).
• Simplify the message format; this may decrease data transfer time (assuming the

messages get smaller). However, this may compromise the system’s ability to
evolve.

• Collapse layers (e.g. in the Connection Worker); by combining two or more layers
into one, developers may be able to increase the efficiency of their code thus
improving the speed of the system.

• Distribute System-level Components to different machines; this may increase
speed if the system is overburdened with requests (see Section 6.5 Distribution of
Components for details).

6.2 Scalability

The proposed architecture defines a client-server relationship between the UI Client
and the OAM Server. This allows the system to easily accommodate multiple
Operators; despite the fact that the SRS states that there is at most one Operator. It is
possible to maintain the appearance of high performance in a multi-user environment
by using any of the alterations mentioned in the [Section 6.1] Performance
Enhancements section.

6.2.1 Upgrading the Database, Print Server or CU
There is a direct relationship between a system’s scalability and its low-level
mechanism(s). Hence, it is important that a system is able to upgrade and/or replace
these mechanisms with relative ease. In the OAM Software System, all
communication with the Database, Print Server and CU is performed through a layer
of abstraction (see Section 3.4.7 CU Handler and Section 3.5.2.2.3 Simple
Operation). Therefore, if it becomes necessary to alter the Database, Print Server or
CU these changes will have a minimal effect on the rest of system.

6.3 Adding and Enhancing Features
Adding or enhancing a feature would naturally require the alteration of at least one
component (possibly more, depending on the type of feature). However, because of
the structure for the event communication subsystem these alterations will have no
effect that any component’s external interface.

 22

6.4 Internationalization
Multiple language support would be isolated to the User Interface Forms layer and
the Simple Operation layer and would not affect the other components. Changing
bill calculations (i.e. different tax structure, different currency) would also be
isolated to the Simple Operations layer.

Note: these changes would also require the storage of some additional information
about Customers and Operators (e.g. Preferred Language, Preferred Currency, Tax
Structure)

6.5 Distribution of Components

The abstract nature of the communication used by the System Components would
allow them to function in a distributed environment. That is, each System
Component could be placed on a different physical machine. In addition, with minor
enhancements, the OAM Server could delegate requests to other OAM Servers
running on different machines.

6.6 Multiple UI Formats

The generic nature of event communication allows multiple versions of the UI Client
to operate simultaneously. Thus, the system could support windowed, web-enabled,
even command-line versions of the UI Client.

 23

7.0 References

CS 445 Project Introduction, August 2000.
 http://www.student.math.uwaterloo.ca/~cs445/project/intro.pdf

CS 445 Software Interface Description, August 2000.
 http://www.student.math.uwaterloo.ca/~cs445/project/soft.pdf

CS 445 SRS Specification December 1, 2000.
 [Hard copy enclosed with submission, soft copy email dftapusk@uwaterloo.ca]

MySQL Manual
 http://www.mysql.com/Downloads/Manual/manual.pdf

Shaw and Garlan, "An Introduction to Software Architecture"
http://www.swen.uwaterloo.ca/~dasiewic/courses/ece452/local/slides/intro_softarch.ps

Shaw and Garlan, Software Architectures: perspectives on an emerging discipline,
Prentice-Hall, 1996

R. Pressman, Software Engineering, McGraw-Hill

TCL/TK SpecTcl GUI Interface builder
 http://dev.scriptics.com/software/spectcl/

 24

8.0 Data Dictionary

Word Meaning
Bridging In a layered architecture bridging occurs when interact is allowed

between non-adjacent layers.
Component
or Module

An isolated part of the software system that performs an isolated set of
functions

CU The Control Unit
CS 445
SRS

Refers to the requirements document for the OAM Software System
(CS445 Software Requirements Specification: OAM Software for SX4)

Daemon A server process that services periodic requests, or performs periodic
functions

DB Database
GUI Graphical User Interface
IP Internet Protocol
Layer A set of functions or routines within a component that performs a

certain task.
Message-
passing

A protocol in which components interact by exchanging messages.
These messages constitute either events or data.

O&A Operations and Administration
OAM Operating, Administration and Maintenance
SRS Software Requirements Specification
SQL Structured Query Language
TCP Transport Control Protocol
UI User Interface
XML Extensible Markup Language

	1
	Abstract
	Introduction
	Purpose
	Scope
	Document Conventions

	Architecture
	Potential Architectural Styles
	Pipes and Filters
	Modularity
	Interfaces
	System Evolution
	Ease of Testing
	Satisfaction of SRS
	Overall Feasibility

	Layered Architecture
	Modularity
	Interfaces
	System Evolution
	Ease of Testing
	Satisfaction of SRS
	Overall feasibility

	Client-Server Architecture
	Modularity
	Interfaces
	System Evolution
	Ease of Testing
	Satisfaction of SRS
	Overall Feasibility

	Summary of Potential Architectures
	Analysis
	System-level Architecture
	Operator Terminal
	UI Client
	(Billing) Daemon
	OAM Server
	Database
	Print Server
	CU Handler
	CU

	Component-level Architecture
	UI Client
	User Interface Forms
	Event Handler

	OAM Server
	Dispatcher
	Connection Worker
	Decision Maker
	Complex Operations
	Simple Operations

	Examples of Component Interaction
	Adding a Customer
	Displaying an Error Message Sent from the CU

	External Interfaces
	The Communication Subsystem
	The Channel
	Message Format

	Database
	CU
	Print Server

	Feasibility Analysis
	MySQL Database
	Communication
	TCP/IP Sockets as Channels
	Using XML as the Message Format

	Using Tcl/Tk for the GUI

	Ability to Evolve
	Performance Enhancements
	Scalability
	Upgrading the Database, Print Server or CU

	Adding and Enhancing Features
	Internationalization
	Distribution of Components
	Multiple UI Formats

	References
	Data Dictionary

