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Abstract

Much recent research has been devoted to learning algarfitmnadeep architectures such as Deep
Belief Networks and stacks of auto-encoder variants, witpressive results obtained in several
areas, mostly on vision and language data sets. The beftsrebtained on supervised learning
tasks involve an unsupervised learning component, usiraiyn unsupervised pre-training phase.
Even though these new algorithms have enabled trainingmeelels, many questions remain as to
the nature of this difficult learning problem. The main gigsinvestigated here is the following:
how does unsupervised pre-training work? Answering thisstians is important if learning in
deep architectures is to be further improved. We proposerakgxplanatory hypotheses and test
them through extensive simulations. We empirically shosvitifluence of pre-training with respect
to architecture depth, model capacity, and number of ingiexamples. The experiments confirm
and clarify the advantage of unsupervised pre-training fHsults suggest that unsupervised pre-
training guides the learning towards basins of attractfoninima that support better generalization
from the training data set; the evidence from these resutparts a regularization explanation for
the effect of pre-training.

Keywords: deep architectures, unsupervised pre-training, deegflmeiworks, stacked denoising
auto-encoders, non-convex optimization

1. Introduction

Deep learning methods aim at learning feature hierarchiths faatures from higher levels of the
hierarchy formed by the composition of lower level featur€bey include learning methods for a
wide array ofdeep architecturegBengio, 2009 provides a survey), including neural netwavikh

many hidden layers (Bengio et al., 2007; Ranzato et al., 20Bicent et al., 2008; Collobert and
Weston, 2008) and graphical models with many levels of mdderiables (Hinton et al., 2006),
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among others (Zhu et al., 2009; Weston et al., 2008). Thieateesults (Yao, 1985; Hastad, 1986;
Hastad and Goldmann, 1991; Bengio et al., 2006), revieweddéscussed by Bengio and LeCun
(2007), suggest that in order to learn the kind of complidditmctions that can represent high-level
abstractions (e.qg., in vision, language, and other Allleagks), one may neeadkep architectures
The recent surge in experimental work in the field seems tp@tphis notion, accumulating evi-
dence that in challenging Al-related tasks—such as compig®n (Bengio et al., 2007; Ranzato
etal., 2007; Larochelle et al., 2007; Ranzato et al., 20@&; &t al., 2009; Mobabhi et al., 2009; Osin-
dero and Hinton, 2008), natural language processing (NCBNdgbert and Weston, 2008; Weston
et al., 2008), robotics (Hadsell et al., 2008), or informatretrieval (Salakhutdinov and Hinton,
2007; Salakhutdinov et al., 2007)—deep learning methogisifsgsantly out-perform comparable
but shallow competitors, and often match or beat the stiatkesart.

These recent demonstrations of the potential of deep legalgorithms were achieved despite
the serious challenge of training models with many layeradaptive parameters. In virtually all
instances of deep learning, the objective function is alfzighn-convex function of the parameters,
with the potential for many distindocal minimain the model parameter space. The principal
difficulty is that not all of these minima provide equivaleggneralization errors and, we suggest,
that for deep architectures, the standard training schébas®d on random initialization) tend to
place the parameters in regions of the parameters spacgethatalize poorly—as was frequently
observed empirically but rarely reported (Bengio and LeQ097).

The breakthrough to effective training strategies for daeghitectures came in 2006 with
the algorithms for training deep belief networks (DBN) (kin et al., 2006) and stacked auto-
encoders (Ranzato et al., 2007; Bengio et al., 2007), whiehath based on a similar approach:
greedy layer-wise unsupervised pre-training followed iyyesvised fine-tuning. Each layer is pre-
trained with an unsupervised learning algorithm, learrangonlinear transformation of its input
(the output of the previous layer) that captures the maimtians in its input. This unsupervised
pre-training sets the stage for a final training phase whexaleep architecture is fine-tuned with
respect to a supervised training criterion with gradiesmeal optimization. While the improvement
in performance of trained deep models offered by the piatg strategy is impressive, little is
understood about the mechanisms underlying this success.

The objective of this paper is to explore, through extensigerimentation, how unsupervised
pre-training works to render learning deep architectureseneffective and why they appear to
work so much better than traditional neural network tragninethods. There are a few reasonable
hypotheses why unsupervised pre-training might work. Quesipility is that unsupervised pre-
training acts as a kind of network pre-conditioner, puttihg parameter values in the appropriate
range for further supervised training. Another possipiltuggested by Bengio et al. (2007), is that
unsupervised pre-training initializes the model to a poirgarameter space that somehow renders
the optimization process more effective, in the sense déaitty a lower minimum of the empirical
cost function.

Here, we argue that our experiments support a view of unsigeer pre-training as an unusual
form of regularization minimizing variance and introducing bias towards confégians of the pa-
rameter space that are useful for unsupervised learninig. pEinspective places unsupervised pre-
training well within the family of recently developed semipervised methods. The unsupervised
pre-training approach is, however, unique among semirgigael training strategies in that it acts by
defining a particular initialization point for standard sugised training rather than either modifying
the supervised objective function (Barron, 1991) or exihficmposing constraints on the parame-
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ters throughout training (Lasserre et al., 2006). This wfiaitialization-as-regularization strategy
has precedence in the neural networks literature, in thpesbfithe early stopping idea (Sjoberg
and Ljung, 1995; Amari et al., 1997), and in the Hidden Marktndels (HMM) community (Bahl
etal., 1986; Povey and Woodland, 2002) where it was foundfitisatraining an HMM as a genera-
tive model was essential (as an initialization step) befimetuning it discriminatively. We suggest
that, in the highly non-convex situation of training a deegh#@ecture, defining a particular initial-
ization pointimplicitly imposes constraints on the parameters in that it specifieshwtinima (out

of a very large number of possible minima) of the cost functioe allowed. In this way, it may
be possible to think of unsupervised pre-training as bedeted to the approach of Lasserre et al.
(2006).

Another important and distinct property of the unsupebipes-training strategy is that in the
standard situation of training using stochastic gradiestdnt, the beneficial generalization effects
due to pre-training do not appear to diminish as the numb&abafiled examples grows very large.
We argue that this is a consequence of the combination ofdheanvexity (multi-modality) of the
objective function and the dependency of the stochastidigmadescent method on example order-
ing. We find that early changes in the parameters have a gliegtact on the final region (basin
of attraction of the descent procedure) in which the leaemets up. In particular, unsupervised
pre-training sets the parameter in a region from which bétisins of attraction can be reached, in
terms of generalization. Hence, although unsupervisedrai@ng is a regularizer, it can have a
positive effect on the training objective when the numberraihing examples is large.

As previously stated, this paper is concerned with an expsial assessment of the various
competing hypotheses regarding the role of unsupervisedraining in the recent success of deep
learning methods. To this end, we present a series of expatindesign to pit these hypotheses
against one another in an attempt to resolve some of the my@terounding the effectiveness of
unsupervised pre-training.

In the first set of experiments (in Section 6), we establigheffiect of unsupervised pre-training
on improving the generalization error of trained deep aechures. In this section we also exploit
dimensionality reduction techniques to illustrate howupesvised pre-training affects the location
of minima in parameter space.

In the second set of experiments (in Section 7), we diredilpmare the two alternative hy-
potheses (pre-training as a pre-conditioner; and praiigias an optimization scheme) against
the hypothesis that unsupervised pre-training is a regakzon strategy. In the final set of experi-
ments, (in Section 8), we explore the role of unsuperviseet@ining in the online learning setting,
where the number of available training examples grows vamyel. In these experiments, we test
key aspects of our hypothesis relating to the topology otcthst function and the role of unsuper-
vised pre-training in manipulating the region of paramsfgace from which supervised training is
initiated.

Before delving into the experiments, we begin with a mordepth view of the challenges in
training deep architectures and how we believe unsupehpse-training works towards overcom-
ing these challenges.
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2. The Challenges of Deep Learning

In this section, we present a perspective on why standardrtgaof deep models through gradient
backpropagation appears to be so difficult. First, it is ingtt to establish what we mean in stating
that training is difficult.

We believe the central challenge in training deep architestis dealing with the strong depen-
dencies that exist during training between the parametgmssa layers. One way to conceive the
difficulty of the problem is that we must simultaneously:

1. adapt the lower layers in order to provide adequate irgothi final (end of training) setting
of the upper layers

2. adapt the upper layers to make good use of the final (endhioirtg) setting of the lower
layers.

The second problem is easy on its own (i.e., when the finahgetf the other layers is known). Itis
not clear how difficult is the first one, and we conjecture thparticular difficulty arises when both
sets of layers must be learned jointly, as the gradient obbjective function is limited to a local
measure given the current setting of other parametershétanbre, because with enough capacity
the top two layers can easily overfit the training set, trainérror does not necessarily reveal the
difficulty in optimizing the lower layers. As shown in our eximents here, the standard training
schemes tend to place the parameters in regions of the p@ranspace that generalize poorly.

A separate but related issue appears if we focus our coasigieof traditional training methods
for deep architectures on stochastic gradient descentqéesee of examples along with an online
gradient descent procedure defines a trajectory in parasyee, which converges in some sense
(the error does not improve anymore, maybe because we ara ltgal minimum). The hypothesis
is that small perturbations of that trajectory (either Liatization or by changes in which examples
are seen when) have more effect early on. Early in the pradfdsfiowing the stochastic gradient,
changes in the weights tend to increase their magnitude arsequently, the amount of non-
linearity of the network increases. As this happens, theokeegions accessible by stochastic
gradient descent on samples of the training distributiccobees smaller. Early on in training small
perturbations allow the model parameters to switch fromtmasin to a nearby one, whereas later
on (typically with larger parameter values), it is unlikéb/‘escape” from such a basin of attraction.
Hence the early examples can have a larger influence andaétiqe, trap the model parameters in
particular regions of parameter space that correspondetgpbcific and arbitrary ordering of the
training examples. An important consequence of this phenomenon is that evdreipresence of
a very large (effectively infinite) amounts of supervisethgdatochastic gradient descent is subject
to a degree obverfittingto the training data presented early in the training pracksthat sense,
unsupervised pre-training interacts intimately with tipéimization process, and when the number
of training examples becomes large, its positive effeceensnot only on generalization error but
also on training error.

1. This process seems similar to the “critical period” ptreena observed in heuroscience and psychology (Bornstein,
1987).
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3. Unsupervised Pre-training Acts as a Regularizer

As stated in the introduction, we believe that greedy layise unsupervised pre-training overcomes
the challenges of deep learning by introducing a useful padhe supervised fine-tunintfaining
procedure. We claim that the regularization effect is a eqnence of the pre-training procedure
establishing an initialization point of the fine-tuning peadlure inside a region of parameter space
in which the parameters are henceforth restricted. Theyteas are restricted to a relatively small
volume of parameter space that is delineated by the bourndding local basin of attractiorof the
supervised fine-tuning cost function.

The pre-training procedure increases the magnitude of gights and in standard deep models,
with a sigmoidal nonlinearity, this has the effect of remdgtboth the function more nonlinear and
the cost function locally more complicated with more togidal features such as peaks, troughs
and plateaus. The existence of these topological featarefers the parameter space locally more
difficult to travel significant distances via a gradient degcprocedure. This is the core of the
restrictive property imposed by the pre-training procedand hence the basis of its regularizing
properties.

But unsupervised pre-training restricts the parameterggtticular regions: those that corre-
spond to capturing structure in the input distributi®{X). To simply state that unsupervised pre-
training is a regularization strategy somewhat undermihesignificance of its effectiveness. Not
all regularizers are created equal and, in comparison talatd regularization schemes such as
L1 andL, parameter penalization, unsupervised pre-training imdtally effective. We believe
the credit for its success can be attributed to the unswgehviraining criteria optimized during
unsupervised pre-training.

During each phase of the greedy unsupervised trainingegiralayers are trained to represent
the dominant factors of variation extant in the data. This thee effect of leveraging knowledge
of X to form, at each layer, a representation>ofconsisting of statistically reliable features of
X that can then be used to predict the output (usually a clésd)ld. This perspective places
unsupervised pre-training well within the family of leargistrategies collectively know as semi-
supervised methods. As with other recent work demonstrdlie effectiveness of semi-supervised
methods in regularizing model parameters, we claim thaetfeetiveness of the unsupervised pre-
training strategy is limited to the extent that learnif@X) is helpful in learningP(Y|X). Here,
we find transformations of—Ilearned features—that are predictive of the main factbvsation
in P(X), and when the pre-training strategy is effecvepme of these learned featuresXofire
also predictive ofY. In the context of deep learning, the greedy unsupervisedegly may also
have a special function. To some degree it resolves the grolof simultaneously learning the
parameters at all layers (mentioned in Section 2) by inttodua proxy criterion. This proxy
criterion encourages significant factors of variation,spre in the input data, to be represented in
intermediate layers.

To clarify this line of reasoning, we can formalize the effe€ unsupervised pre-training in
inducing a prior distribution over the parameters. Let usuaee that parameters are forced to be
chosen in a bounded regighc RY. Let S be split in regions{Ry} that are the basins of attrac-
tion of descent procedures in the training error (note {Rat depends on the training set, but the
dependency decreases as the number of examples incredésesave kR = S andR NR; =0
fori # j. Letw = [1gcr 0B be the volume associated with regiBn (where® are our model's

2. Acting as a form of (data-dependent) “prior” on the partarse as we are about to formalize.
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parameters). Lat, be the probability that a purely random initialization (ating to our initial-

ization procedure, which factorizes across parametengslaRy, and letr be the probability that
pre-training (following a random initialization) lands Ry, that is,  rx = 3¢ Tk = 1. We can now
take into account the initialization procedure as a reggdéipn term:

regularizer= —logP(0).
For pre-trained models, the prior is

Ppre—training(e) = ZleeRkT[k/Vk-

For the models without unsupervised pre-training, therpsio

Pno—pre—training(8) = Zleeerk/Vk-

One can verify thaPyre_training(8 € R«) = Tk andPno—pre-training(8 € Rk) = rx. Whenry is tiny, the
penalty is high whe® € Ry, with unsupervised pre-training. The derivative of thigularizer is
zero almost everywhere because we have chosen a uniforminside each regioRs. Hence, to
take the regularizer into account, and having a generativéeiPyre_training(8) for 0 (i.e., this is
the unsupervised pre-training procedure), it is reasenttbbample an initiab from it (knowing
that from this point on the penalty will not increase durihg tterative minimization of the training
criterion), and this is exactly how the pre-trained modetsabtained in our experiments.

Note that this formalization is just an illustration: it isere to simply show how one could
conceptually think of an initialization point as a regutan and should not be taken as a literal
interpretation of how regularization is explicitly achésl; since we do not have an analytic formula
for computing therg’'s andvy's. Instead these are implicitly defined by the whole unsviped
pre-training procedure.

4. Previous Relevant Work

We start with an overview of the literature on semi-supedikearning (SSL), since the SSL frame-
work is essentially the one in which we operate as well.

4.1 Related Semi-Supervised Methods

It has been recognized for some time that generative modeless prone to overfitting than dis-
criminant ones (Ng and Jordan, 2002). Consider input veridkand target variabl¥. Whereas a
discriminant model focuses dn(Y|X), a generative model focuses B(X,Y) (often parametrized
asP(X|Y)P(Y)), that is, it also cares about gettiR§X) right, which can reduce the freedom of
fitting the data when the ultimate goal is only to prediajiven X.

Exploiting information abouP(X) to improve generalization of a classifier has been the dyivin
idea behind semi-supervised learning (Chapelle et al§RFbr example, one can use unsupervised
learning to magX into a representation (also called embedding) such thatkamples<; andx;
that belong to the same cluster (or are reachable througbragsth going through neighboring ex-
amples in the training set) end up having nearby embedd@gs.can then use supervised learning
(e.g., a linear classifier) in that new space and achieverbgéineralization in many cases (Belkin
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and Niyogi, 2002; Chapelle et al., 2003). A long-standingara of this approach is the applica-
tion of Principal Components Analysis as a pre-procesdiag lsefore applying a classifier (on the
projected data). In these models the data is first transibiima@ new representation using unsu-
pervised learning, and a supervised classifier is stackédpomearning to map the data in this new
representation into class predictions.

Instead of having separate unsupervised and supervisegoo@nts in the model, one can con-
sider models in whichiP(X) (or P(X,Y)) andP(Y|X) share parameters (or whose parameters are
connected in some way), and one can trade-off the supereritedon — logP(Y|X) with the un-
supervised or generative one lpgP(X) or —logP(X,Y)). It can then be seen that the generative
criterion corresponds to a particular form of prior (Lasset al., 2006), namely that the structure of
P(X) is connected to the structure BfY|X) in a way that is captured by the shared parametrization.
By controlling how much of the generative criterion is inddd in the total criterion, one can find a
better trade-off than with a purely generative or a purescdiminative training criterion (Lasserre
et al., 2006; Larochelle and Bengio, 2008).

In the context of deep architectures, a very interestindieatpon of these ideas involves adding
an unsupervised embedding criterion at each layer (or amyistermediate layer) to a traditional
supervised criterion (Weston et al., 2008). This has beewslio be a powerful semi-supervised
learning strategy, and is an alternative to the kind of allgors described and evaluated in this
paper, which also combine unsupervised learning with sigegt learning.

In the context of scarcity of labelled data (and abundanemiabelled data), deep architectures
have shown promise as well. Salakhutdinov and Hinton (2d@8tribe a method for learning the
covariance matrix of a Gaussian Process, in which the usagelabelled examples for modeling
P(X) improvesP(Y|X) quite significantly. Note that such a result is to be expecteith few la-
belled samples, modelir(X) usually helps. Our results show that even in the conteabahdant
labelled data unsupervised pre-training still has a pronounced pasiiffect on generalization: a
somewhat surprising conclusion.

4.2 Early Stopping as a Form of Regularization

We stated that pre-training as initialization can be seemstsicting the optimization procedure to
a relatively small volume of parameter space that corredpdn a local basin of attraction of the
supervised cost function. Early stopping can be seen aadgavsimilar effect, by constraining the
optimization procedure to a region of the parameter spaateigitiose to the initial configuration
of parameters. With the number of training iterations amgthe learning rate used in the update
procedurern can be seen as the reciprocal of a regularization parametkyed, restricting either
guantity restricts the area of parameter space reachabtetfre starting point. In the case of the
optimization of a simple linear model (initialized at thegan) using a quadratic error function and
simple gradient descent, early stopping will have a singféect to traditional regularization.

Thus, in both pre-training and early stopping, the pararseté the supervised cost function
are constrained to be close to their initial valde& more formal treatment of early stopping as
regularization is given by Sjoberg and Ljung (1995) and Airetal. (1997). There is no equivalent
treatment of pre-training, but this paper sheds some lighhe effects of such initialization in the
case of deep architectures.

3. In the case of pre-training the “initial values” of the @areters for the supervised phase are those that were abtaine
at the end of pre-training.
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5. Experimental Setup and Methodology

In this section, we describe the setting in which we test gigothesis introduced in Section 3 and
previously proposed hypotheses. The section includesaipisn of the deep architectures used,
the data sets and the details necessary to reproduce olis.resu

5.1 Models

All of the successful methods (Hinton et al., 2006; Hintod &alakhutdinov, 2006; Bengio et al.,
2007; Ranzato et al., 2007; Vincent et al., 2008; Weston.e28D8; Ranzato et al., 2008; Lee
et al., 2008) in the literature for training deep architeetuhave something in common: they rely
on an unsupervised learning algorithm that provides aitrgisignal at the level of a single layer.
Most work in two main phases. In a first phasasupervised pre-trainingll layers are initialized
using this layer-wise unsupervised learning signal. Incaseé phasefine-tuning a global training
criterion (a prediction error, using labels in the case ofipesvised task) is minimized. In the
algorithms initially proposed (Hinton et al., 2006; Bengibal., 2007; Ranzato et al., 2007), the
unsupervised pre-training is done in a greedy layer-wishiden: at stag&, thek-th layer is trained
(with respect to an unsupervised criterion) using as infpeioutput of the previous layer, and while
the previous layers are kept fixed.

We shall consider two deep architectures as represergaifvisvo families of models encoun-
tered in the deep learning literature.

5.1.1 DeEEPBELIEF NETWORKS

The first model is the Deep Belief Net (DBN) by Hinton et al. @8], obtained by training and

stacking several layers of Restricted Boltzmann MachiBM) in a greedy manner. Once this

stack of RBMs is trained, it can be used to initialize a mialyier neural network for classification.
An RBM with n hidden units is a Markov Random Field (MRF) for the joint disition be-

tween hidden variablels and observed variableg such thatP(h|x) andP(x|h) factorize, that is,

P(h[x) = [1; P(hi|x) andP(x|h) = [7; P(xj|h). The sufficient statistics of the MRF are typicahy

xj andh;x;, which gives rise to the following joint distribution:

P(X h) 0 eh/WX+b/X+C/h

with corresponding parametes= (W, b,c) (with ' denoting transposes; associated withh;, b
with x;, andW; with hix;). If we restricth; andx; to be binary units, it is straightforward to show
that

P(x/h) = |_| P(xj|h) with
i
P(xj =1Jh) = sigmoidb; + % Wjhi).

where sigmoida) = 1/(1+exp(—a)) (applied element-wise on a vect@;, andP(h|x) also has
a similar form:

P(h|x) = |__|P(hi]x) with

P(hi=1x) = sigmoidc + ZVVI] Xj)-
J
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The RBM form can be generalized to other conditional distidns besides the binomial, including
continuous variables. Welling et al. (2005) describe a gdization of RBM models to conditional
distributions from the exponential family.

RBM models can be trained by approximate stochastic gradiescent. AlthoughP(x) is
not tractable in an RBM, the Contrastive Divergence estim@tinton, 2002) is a good stochastic
approximation ofﬂ%g(x), in that it very often has the same sign (Bengio and Dela)l2809).

A DBN is a multi-layer generative model with layer variables(the input or visible layer),
hi, hp, etc. The top two layers have a joint distribution which isRBM, and P(hg|hg;1) are
parametrized in the same way as for an RBM. Hence a 2-layer BBNRBM, and a stack of RBMs
share parametrization with a corresponding DBN. The cetira divergence update direction can
be used to initialize each layer of a DBN as an RBM, as follo@snsider the first layer of the DBN
trained as an RBMP; with hidden layerh; and visible layewn;. We can train a second RBM
that models (in its visible layer) the samplasfrom Py (h;|v1) whenv; is sampled from the training
data set. It can be shown that this maximizes a lower bounti@fog-likelihood of the DBN. The
number of layers can be increased greedily, with the newtieddop layer trained as an RBM to
model the samples produced by chaining the posteRiighy_1) of the lower layers (starting from
hp from the training data set).

The parameters of a DBN or of a stack of RBMs also corresportidgarameters of a de-
terministic feed-forward multi-layer neural network. Thth unit of thek-th layer of the neural
network outputsﬁki = sigmoid(Cyi + ¥ j Wkij ﬁk_“-), using the parametecg andW of thek-th layer
of the DBN. Hence, once the stack of RBMs or the DBN is traimed can use those parameters to
initialize the first layers of a corresponding multi-layeunal network. One or more additional lay-
ers can be added to map the top-level featbes the predictions associated with a target variable
(here the probabilities associated with each class in aifilzstion task). Bengio (2009) provides
more details on RBMs and DBNSs, and a survey of related moadelslaep architectures.

5.1.2 SACKED DENOISING AUTO-ENCODERS

The second model, by Vincent et al. (2008), is the so-callettked Denoising Auto-Encoder
(SDAE). It borrows the greedy principle from DBNs, but usesdising auto-encoders as a building
block for unsupervised modeling. An auto-encoder learnsraoderh(-) and a decodeg(-) whose
composition approaches the identity for examples in theitrg set, that isg(h(x)) ~ x for x in the
training set.

Assuming that some constraint prevegts(-)) from being the identity for arbitrary arguments,
the auto-encoder has to capture statistical structureeirtrgtining set in order to minimize recon-
struction error. However, with a high capacity cod&x( has too many dimensions), a regular
auto-encoder could potentially learn a trivial encodingptéNthat there is an intimate connection
between minimizing reconstruction error for auto-encederd contrastive divergence training for
RBMs, as both can be shown to approximate a log-likelihoadignt (Bengio and Delalleau, 2009).

Thedenoising auto-encoddiincent et al., 2008; Seung, 1998; LeCun, 1987; Gallinaale
1987) is a stochastic variant of the ordinary auto-encodttrtive distinctive property that even with
a high capacity model, it cannot learn the identity mappiglenoising autoencoder is explicitly
trained to denoise a corrupted version of its input. Itsnireg criterion can also be viewed as a
variational lower bound on the likelihood of a specific geige model. It has been shown on an
array of data sets to perform significantly better than @dirauto-encoders and similarly or better
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than RBMs when stacked into a deep supervised architedtiregnt et al., 2008). Another way to
prevent regular auto-encoders with more code units thantsrip learn the identity is to restrict the
capacity of the representation by imposing sparsity on tlie Ranzato et al., 2007, 2008).

We now summarize the training algorithm of the Stacked D&ngiAuto-Encoders. More de-
tails are given by Vincent et al. (2008). Each denoising @utcoder operates on its inpuseither
the raw inputs or the outputs of the previous layer. The d@ngiauto-encoder is trained to recon-
structx from a stochastically corrupted (noisy) transformationtofThe output of each denoising
auto-encoder is the “code vectdi(x), not to confuse with the reconstruction obtained by appglyin
the decoder to that code vector. In our experiméks = sigmoid b +Wx) is an ordinary neural
network layer, with hidden unit biasés and weight matrixV. Let C(x) represent a stochastic cor-
ruption ofx. As done by Vincent et al. (2008), we §&{x) = x; or 0, with a random subset (of a fixed
size) selected for zeroing. We have also considered a salewper noise, where we select a ran-
dom subset of a fixed size and &gfx) = Bernoulli(0.5). The denoised “reconstruction” is obtained
from the noisy input withk = sigmoid c+WTh(C(x))), using biases and the transpose of the feed-
forward weightsW. In the experiments on images, both the raw inguind its reconstructior;
for a particular pixel can be interpreted as a Bernoulli probability for that pixle probability
of painting the pixel as black at that location. We denoteX(i) = 5; CE(x;||X) the sum of the
component-wise cross-entropy between the Bernoulli gmtibadistributions associated with each
element ofx and its reconstruction probabilitiés CE(x||X) = — T (xlogX + (1 —x)log(1—X)).
The Bernoulli model only makes sense when the input comgsrard their reconstruction are in
[0,1]; another option is to use a Gaussian model, which corresporaiMean Squared Error (MSE)
criterion.

With either DBN or SDAE, an output logistic regression layeradded after unsupervised
training. This layer uses softmax (multinomial logistigression) units to estimat(classx) =
softmaxiasd @), Whereg; is a linear combination of outputs from the top hidden layére whole
network is then trained as usual for multi-layer perceprdno minimize the output (negative log-
likelihood) prediction error.

5.2 Data Sets

We experimented on three data sets, with the motivatiorotiragxperiments would help understand
previously presented results with deep architectureschvviere mostly with the MNIST data set
and variations (Hinton et al., 2006; Bengio et al., 2007; &amet al., 2007; Larochelle et al., 2007;
Vincent et al., 2008):

MNI ST the digit classification data set by LeCun et al. (1998), ammg 60,000 training and
10,000 testing examples of 28x28 handwritten digits in egegle.

I nfiniteMNI ST a data set by Loosli et al. (2007), which is an extensioM®IST from which
one can obtain a quasi-infinite number of examples. The sgoe obtained by performing
random elastic deformations of the origimdIST digits. In this data set, there is only one set
of examples, and the models will be compared by their (ohjpeeformance on it.

Shapeset is a synthetic data set with a controlled range of geomaiviariances. The underlying
task is binary classification of 2910 images of triangles and squares. The examples show
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images of shapes with many variations, such as size, oti@mtand gray-level. The data set
is composed of 50000 training, 10000 validation and 10080iteages.

5.3 Setup
The models used are

1. Deep Belief Networks containing Bernoulli RBM layers,
2. Stacked Denoising Auto-Encoders with Bernoulli inpuitsjrand

3. standard feed-forward multi-layer neural networks,

each with 1-5 hidden layers. Each hidden layer containsaheswumber of hidden units, which

is a hyperparameter. The other hyperparameters are thpem&ed and supervised learning rates,
the L, penalty / weight decay,and the fraction of stochastically corrupted inputs (far 8DAE).

For MNIST, the number of supervised and unsupervised passes throegtata (epochs) is 50 and
50 per layer, respectively. WithnfiniteMNIST , we perform 2.5 million unsupervised updates
followed by 7.5 million supervised updateéhe standard feed-forward networks are trained using
10 million supervised updates. RdNIST, model selection is done by choosing the hyperparameters
that optimize the supervised (classification) error on dilalation set. FomfiniteMNIST |, we use

the average online error over the last million examples faenparameter selection. In all cases,
purely stochastic gradient updates are applied.

The experiments involve the training of deep architectwéh a variable number of layers
with and without unsupervised pre-training. For a giveretayveights are initialized using random
samples from unifori-1/v'k,1/v/K], wherek is the number of connections that a unit receives
from the previous layer (the fan-in). Either supervisedlgrat descent or unsupervised pre-training
follows.

In most cases (foMINIST), we first launched a number of experiments using a crosgdpotf
hyperparameter valuésipplied to 10 different random initialization seeds. Wentlselected the
hyperparameter sets giving the best validation error foh@ambination of model (with or without
pre-training), number of layers, and number of trainingatiens. Using these hyper-parameters,
we launched experiments using an additional 400 initifbraseeds. FomnfiniteMNIST  , only
one seed is considered (an arbitrarily chosen value).

In the discussions below we sometimes use the veprgarent local minimum to mean the
solution obtained after training, when no further notideglvogress seems achievable by stochastic
gradient descent. It is possible that these are not readly a&rue local minimum (there could be a
tiny ravine towards significant improvement, not accessiiyl gradient descent), but it is clear that
these end-points represent regions where gradient dascntk. Note also that when we write of
number of layers it is to be understood as the numbéidifenlayers in the network.

4. The data set can be downloaded frotp://www.iro.umontreal.ca/lisa/twiki/bin/view.cg ilPublic/
ShapesetDataForJMLR .

5. A penalizing tern‘?\HeH% is added to the supervised objective, whérare the weights of the network, aidis a
hyper-parameter modulating the strength of the penalty.

6. The number of examples was chosen to be as large as posdilike still allowing for the exploration a variety of
hyper-parameters.

7. Number of hidden unitg {400,800, 1200}; learning ratec {0.1,0.05,0.02,0.01,0.005}; ¢, penalty coefficient
A e {1074,1075,1075,0}; pre-training learning rate {0.01,0.005,0.002 0.001,0.0005}; corruption probability
€ {0.0,0.1,0.25,0.4}; tied weightse {yesno}.
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6. The Effect of Unsupervised Pre-training

We start by a presentation of large-scale simulations tlatvintended to confirm some of the
previously published results about deep architectureghdmrocess of analyzing them, we start
making connections to our hypotheses and motivate the iexpets that follow.

6.1 Better Generalization

When choosing the number of units per layer, the learnirggaat the number of training iterations
to optimize classification error on the validation set, y®swuised pre-training gives substantially
lower test classification error than no pre-training, fa same depth or for smaller depth on various
vision data sets (Ranzato et al., 2007; Bengio et al., 20@vodhelle et al., 2009, 2007; Vincent
et al., 2008) no larger than thdNIST digit data set (experiments reported from 10,000 to 50,000
training examples).

Such work was performed with only one or a handful of différemdom initialization seeds,
so one of the goals of this study was to ascertain the effettteofandom seed used when initial-
izing ordinary neural networks (deep or shallow) and thet@ming procedure. For this purpose,
between 50 and 400 different seeds were used to obtain thRigsaoONMNIST.
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Figure 1. Effect of depth on performance for a model trainkedt)( without unsupervised pre-
training and (ight) with unsupervised pre-training, for 1 to 5 hidden layerst{orks
with 5 layers failed to converge to a solution, without the ud unsupervised pre-
training). Experiments oMNIST. Box plots show the distribution of errors associated
with 400 different initialization seeds (top and bottom dikes in box, plus outliers be-
yond top and bottom quartiles). Other hyperparameters @imized away (on the val-
idation set).Increasing depth seems to increase the probability of fingioor apparent
local minima.

Figure 1 shows the resulting distribution of test classiiftcaerror, obtained with and without
pre-training, as we increase the depth of the network. EiQushows these distributions as his-
tograms in the case of 1 and 4 layers. As can be seen in Figuresapervised pre-training allows
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classification error to go down steadily as we move from 1 tddflén layers, whereas without
pre-training the error goes up after 2 hidden layers. It khalso be noted that we were unable to
effectively train 5-layer models without use of unsupesdipre-training. Not only is the error ob-
tained on average with unsupervised pre-training sysieatigtlower than without the pre-training,
it appears also more robust to the random initializationthWsupervised pre-training the variance
stays at about the same level up to 4 hidden layers, with thebauof bad outliers growing slowly.

Contrast this with the case without pre-training: the wvac@and number of bad outliers grows
sharply as we increase the number of layers beyond 2. Theob&iined with unsupervised pre-
training is more pronounced as we increase the number ofdags is the gain in robustness to
random initialization. This can be seen in Figure 2. Thedase in error variance and mean for
deeper architectures without pre-training suggestsiticetasing depth increases the probability
of finding poor apparent local minima when starting from random initialization. Itis also intste
ing to note the low variance and small spread of errors obthwith 400 seeds with unsupervised
pre-training: it suggests thamsupervised pre-training is robust with respect to the rardom
initialization seed (the one used to initialize parameters before pre-tra)ning

#%X 1 layer without pretraining}i

(5 1 layer with pretraining

® [ 4 layers without pretraining
) 4 layers with pretraining

count
count

i

il 0wk DR

test error test error

Figure 2: Histograms presenting the test errors obtainefMIST using models trained with or
without pre-training (400 different initializations egchLeft: 1 hidden layer.Right: 4
hidden layers.

These experiments show that the variance of final test elitbmraspect to initialization random
seed is larger without pre-training, and this effect is niteph for deeper architectures. It should
however be noted that there is a limit to the success of thimigue: performance degrades for 5
layers on this problem.

6.2 Visualization of Features

Figure 3 shows the weights (called filters) of the first laylethe DBN before and after supervised
fine-tuning. For visualizing what units do on the 2nd and 2wkl we used the activation maxi-
mization technique described by Erhan et al. (2009): toalize what a unit responds most to, the
method looks for the bounded input pattern that maximizesttivation of a given unit. This is an
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optimization problem which is solved by performing gradiaacent in the space of the inputs, to
find a local maximum of the activation function. Interestingnearly the same maximal activation
input pattern is recovered from most random initializagiaf the input pattern.
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Figure 3: Visualization of filters learned by a DBN trained lofiniteMNIST . The top figures
contain a visualization of filters after pre-training, whihe bottoms ones picture the
same units after supervised fine-tuning; from left to rightits from the 1st, 2nd and 3rd
layers, respectively.

For comparison, we have also visualized the filters of a nitfar 1-3 layers in which no pre-
training was performed (Figure 4). While the first layer fitelo seem to correspond to localized
features, 2nd and 3rd layers are not as interpretable amyn@ualitatively speaking, filters from
the bottom row of Figure 3 and those from Figure 4 have littleammon, which is an interesting
conclusion in itself. In addition, there seems to be moreregting visual structures in the features
learned in networks with unsupervised pre-training.

Several interesting conclusions can be drawn from Figufar8t, supervised fine-tuning (after
unsupervised pre-training), even with 7.5 million updatises not change the weights in a signif-
icant way (at least visually): they seem stuck in a certagiore of weight space, and the sign of
weights does not change after fine-tuning (hence the sanermpéd seen visually). Second, dif-
ferent layers change differently: the first layer changestlewhile supervised training has more
effect when performed on the 3rd layer. Such observatioms@msistent with the predictions made
by our hypothesis: namely that the early dynamics of stdizhgeadient descent, the dynamics in-
duced by unsupervised pre-training, can “lock” the tragnim a region of the parameter space that
is essentially inaccessible for models that are trainedgaraly supervised way.

Finally, the features increase in complexity as we add mayerk. First layer weights seem
to encode basic stroke-like detectors, second layer weigggm to detect digit parts, while top
layer weights detect entire digits. The features are moneptioated as we add more layers, and
displaying only one image for each “feature” does not doigesto the non-linear nature of that
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feature. For example, it does not show e of pattern®n which the feature is highly active (or
highly inactive).

While Figures 3—4 show only the filters obtained lofiniteMNIST ~ , the visualizations are
similar when applied oMNIST. Likewise, the features obtained with SDAE result in qadively
similar conclusions; Erhan et al. (2009) gives more details

Figure 4: Visualization of filters learned by a network witthopre-training, trained on
InfiniteMNIST . The filters are shown after supervised training; from leftight: units
from the 1st, 2nd and 3rd layers, respectively.

6.3 Visualization of Model Trajectories During Learning

Visualizing the learned features allows for a qualitaticenparison of the training strategies for
deep architectures. However it is not useful for investigahow these strategies are influenced
by random initialization, as the features learned from ipldtinitializations look similar. If it
was possible for us to visualize a variety of models at theestame, it would allow us to explore
our hypothesis, and ascertain to what degree and how thd pet-trained models (for different
random seeds) is far from the set of models without preitrgin Do these two sets cover very
different regions in parameter space? Are parameter togjes getting stuck in many different
apparent local minima?

Unfortunately, it is not possible to directly compare pae#en values of two architectures, be-
cause many permutations of the same parameters give rise gaime model. However, one can
take a functional approximation approach in which we complae function (from input to output)
represented by each network, rather than comparing thengéees. The function is the infinite
ordered set of output values associated with all possilgaté) and it can be approximated with
a finite number of inputs (preferably plausible ones). Taaiize the trajectories followed during
training, we use the following procedure. For a given moda,compute and concatenate all its
outputs on the test set examples as one long vector sumngawhiere it stands in “function space”.
We get one such vector for each partially trained model (et éaining iteration). This allows us
to plot many learning trajectories, one for each initigiiza seed, with or without pre-training. Us-
ing a dimensionality reduction algorithm we then map thesgors to a two-dimensional space for
visualization® Figures 5 and 6 present the results using dimensionalityctaxh techniques that

8. Note that we can and do project the models with and withme#tiaining at the same time, so as to visualize them in
the same space.
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focus respectively on localnd global structuré? Each point is colored according to the training
iteration, to help follow the trajectory movement.

100

2 layers with pre—training

60

40

2 layers without pre—training
-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 5: 2D visualizations with tSNE of the functions regmated by 50 networks with and 50 net-
works without pre-training, as supervised training proiseaver MNIST. See Section 6.3
for an explanation. Color from dark blue to cyan and red iattis a progression in train-
ing iterations (training is longer without pre-trainingl.he plot shows models with 2
hidden layers but results are similar with other depths.

What seems to come out of these visualizations is the fatigwi

1. The pre-trained and not pre-trained models start ftagin different regions of function
space.

2. From the visualization focusing on local structure (FéyG) we see that all trajectories of
a given type (with pre-training or without) initially movedether. However, at some point
(after about 7 epochs) the different trajectories (cowadng to different random seeds)
diverge (slowing down into elongated jets) and never gek lzdmse to each other (this is
more true for trajectories of networks without pre-trag)inThis suggests that each trajectory
moves into a different apparent local minimdtn.

9. t-Distributed Stochastic Neighbor Embedding, or tSNfEyén der Maaten and Hinton (2008), with the default pa-
rameters available in the public implementatibtip://ict.ewi.tudelft.nl/ lvandermaaten/t-SNE.html .

10. Isomap by Tenenbaum et al. (2000), with one connecteghanent.

11. One may wonder if the divergence points correspond terani point in terms of overfitting. As shall be seen in
Figure 8, the test error does not improve much after the 7tklgpvhich reinforces this hypothesis.
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Figure 6: 2D visualization with ISOMAP of the functions repented by 50 networks with and
50 networks without pre-training, as supervised trainimgcpeds over MNIST. See Sec-
tion 6.3 for an explanation. Color from dark blue to cyan daadés a progression in
training iterations (training is longer without pre-traeig). The plot shows models with
2 hidden layers but results are similar with other depths.

3. From the visualization focusing on global structure (ifgg6), we see the pre-trained models
live in a disjoint and much smaller region of space than thepne-trained models. In fact,
from the standpoint of the functions found without presinag, the pre-trained solutions
look all the same, and their self-similarity increasesi@rare across seeds decreases) during
training, while the opposite is observed without pre-tiragn This is consistent with the
formalization of pre-training from Section 3, in which wesgebed a theoretical justification
for viewing unsupervised pre-training as a regularizegreéhthe probabilities of pre-traininig
parameters landing in a basin of attraction is small.

The visualizations of the training trajectories do seematafic our suspicions. It is difficult
to guarantee that each trajectory actually does end up ifieaedit local minimum (corresponding
to a different function and not only to different parameteidowever, all tests performed (visual
inspection of trajectories in function space, but alsaeation of second derivatives in the directions
of all the estimated eigenvectors of the Jacobian not regart details here) were consistent with
that interpretation.

We have also analyzed models obtained at the end of traituingsualize the training criterion
in the neighborhood of the parameter vedibrobtained. This is achieved by randomly sampling
a directionv (from the stochastic gradient directions) and by plotting training criterion around
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6* in that direction, that is, & =6*+av, fora € {-2.5,-24,...,-0.1,0,0.1,...2.4,2.5}, and

v normalized (|v|| = 1). This analysis is visualized in Figure 7. The error curlesk close to
guadratic and we seem to be near a local minimum in all destinvestigated, as opposed to a
saddle point or a plateau. A more definite answer could benddecomputing the full Hessian
eigenspectrum, which would be expensive. Figure 7 alsoesigghat the error landscape is a bit
flatter in the case of unsupervised pre-training, and fl&stedeeper architectures.

Figure 7. Training errors obtained @mapeset when stepping in parameter space around a con-
verged model in 7 random gradient directions (stepsize.Df. OTop: no pre-training.
Bottom: with unsupervised pre-training.eft: 1 hidden layer.Middle: 2 hidden lay-
ers. Right: 3 hidden layers. Compare also with Figure 8, where 1-lagdworks with
unsupervised pre-training obtain higher training errors.

6.4 Implications

The series of results presented so far show a picture thansistent with our hypothesis. Better
generalization that seems to be robust to random initizdiza is indeed achieved by pre-trained
models, which indicates that unsupervised learning?©f) is helpful in learningP(Y|X). The
function space landscapes that we visualized point to ttietlfiat there are many apparent local
minima. The pre-trained models seem to end up in distindbnsgof these error landscapes (and,
implicitly, in different parts of the parameter space). 98 both seen from the function space
trajectories and from the fact that the visualizations @&f larned features are qualitatively very
different from those obtained by models without pre-tnagni

7. The Role of Unsupervised Pre-training

The observations so far in this paper confirm that startimgsilpervised optimization from pre-
trained weights rather than from randomly initialized wegconsistently yields better performing
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classifiers oMNIST. To better understand where this advantage came frompifgeitant to realize
that thesupervised objective being optimized is exactly the sarhetincasesThe gradient-based
optimization procedure is also the same. The only thingdtigrs is the starting point in parameter
space: either picked at random or obtained after unsupehgee-training (which also starts from a
random initialization).

Deep architectures, since they are built from the compmusif several layers of non-linearities,
yield an error surface that is non-convex and hard to opémigth the suspected presence of many
local minima (as also shown by the above visualizations). ra&dgnt-based optimization should
thus end in the apparent local minimum of whatekasin of attractionwe started from. From
this perspective, the advantage of unsupervised prarigacould be that it puts us in a region of
parameter space where basins of attraction run deeper than picking starting parameters at
random. The advantage would be due to a befpdimization.

Now it might also be the case that unsupervised pre-traipintg us in a region of parameter
space in which training error is not necessarily better tivaen starting at random (or possibly
worse), but which systematically yields better generéibra(test error). Such behavior would be
indicative of aregularization effect. Note that the two forms of explanation aret necessarily
mutually exclusive

Finally, a very simple explanation could be the most obvions: namely the disparity in the
magnitude of the weights (or more generally, the margirgtrithution of the weights) at the start of
the supervised training phase. We shall analyze (and ru)elos hypothesis first.

7.1 Experiment 1: Does Pre-training Provide a Better Condiioning Process for Supervised
Learning?

Typically gradient descent training of the deep model isahzed with randomly assigned weights,

small enough to be in the linear region of the parameter sgdase to zero for most neural network
and DBN models). Itis reasonable to ask if the advantageri@gay having an initial unsupervised

pre-training phase is simply due to the weights being laayet therefore somehow providing a
better “conditioning” of the initial values for the optin@tion process; we wanted to rule out this
possibility.

By conditioning, we mean the range and marginal distribufimm which we draw initial
weights. In other words, could we get the same performanearaage as unsupervised pre-training
if we were still drawing the initial weights independentbyt from a more suitable distribution than
the uniformj—1/v/k, 1/v/k|? To verify this, we performed unsupervised pre-training] @omputed
marginal histograms for each layer’s pre-trained weightsl@iases (one histogram per each layer’s
weights and biases). We then resampled new “initial” rangaights and biases according to these
histograms (independently for each parameter), and peedfine-tuning from there. The resulting
parameters have the same marginal statistics as thoseedbiter unsupervised pre-training, but
not the same joint distribution.

Two scenarios can be imagined. In the first, the initialaatirom marginals would lead to
significantly better performance than the standard imtdion (when no pre-training is used).
This would mean that unsupervised pre-training does peogicbetter marginal conditioning of
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the weights. In the second scenario, the marginals woulll te@erformance similar to or worse
than that without pre-traininty

initialization. Uniform | Histogram| Unsup.pre-tr.
1 layer 1.814+0.07 | 1.94+0.09 | 1.414+0.07
2 layers 1.77+0.10 | 1.69+0.11 | 1.374+0.09

Table 1: Effect of various initialization strategies on d&ilayer architectures: independent uni-
form densities (one per parameter), independent densities the marginals after un-
supervised pre-training, or unsupervised pre-trainingi¢tv samples the parameters in a
highly dependent way so that they collaborate to make up deodising auto-encoders.)
Experiments orMNIST, numbers are mean and standard deviation of test errorssgcr
different initialization seeds).

What we observe in Table 1 seems to fall within the first sdenatowever, while initializing
the weights to match the marginal distributions at the en@t@ftraining appears to slightly improve
the generalization error on MNIST for 2 hidden layers, tHféedence is not significant and it is far
from fully accounting for the discrepancy between the paited and non-pre-trained results.

This experiment constitutes evidence against the pretionatig hypothesis, but does not ex-
clude either the optimization hypothesis or the reguléionshypothesis.

7.2 Experiment 2: The Effect of Pre-training on Training Err or

The optimization and regularization hypotheses divergeheir prediction on how unsupervised
pre-training should affect the training error: the formeedcts that unsupervised pre-training
should result in a lower training error, while the latter giots the opposite. To ascertain the influ-
ence of these two possible explanatory factors, we lookéuedest cost (Negative Log Likelihood
on test data) obtained as a function of the training coshgatbe trajectory followed in parameter
space by the optimization procedure. Figure 8 shows 400esktiturves started from a point in
parameter space obtained from random initialization, ihatvithout pre-training (blue), and 400
started from pre-trained parameters (red).

The experiments were performed for networks with 1, 2 andd8ém layers. As can be seen
in Figure 8, while for 1 hidden layer, unsupervised prerirad reaches lower training cost than no
pre-training, hinting towards a better optimization, thisot necessarily the case for the deeper
networks. The remarkable observation is rather thia same training cost level, the pre-trained
models systematically yield a lower test ct®in the randomly initialized ones. The advantage
appears to be one bktter generalization rather than merely a better optirticra procedure

This brings us to the following result: unsupervised pesring appears to have a similar effect
to that of a good regularizer or a good “prior” on the paramsgteven though no explicit regular-
ization term is apparent in the cost being optimized. As vagestin the hypothesis, it might be
reasoned that restricting the possible starting pointsaanameter space to those that minimize the
unsupervised pre-training criterion (as with the SDAE)eslin effect restrict the set of possible

12. We observed that the distribution of weights after uesuped pre-training is fat-tailed. It is conceivable thain-
pling from such a distribution in order to initialize a deeplatecture might actuallpurt the performance of a deep
architecture (compared to random initialization from afoim distribution).
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Figure 8: Evolution without pre-training (blue) and witheptraining (red) orMNIST of the log of
the test NLL plotted against the log of the train NLL as tramiproceeds. Each of the
2 x 400 curves represents a different initialization. The mriare measured after each
pass over the data. The rightmost points were measuredtlafidirst pass of gradient
updates. Since training error tends to decrease duringrggithe trajectories run from
right (high training error) to left (low training error). &jectories moving up (as we go
leftward) indicate a form of overfitting. All trajectorieseaplotted on top of each other.

final configurations for parameter values. Like regulagaergeneral, unsupervised pre-training (in
this case, with denoising auto-encoders) might thus beasdacreasing the variance and introduc-
ing a bias (towards parameter configurations suitable fdiopaing denoising). Unlike ordinary
regularizers, unsupervised pre-training does so in adigp@ndent manner.

7.3 Experiment 3: The Influence of the Layer Size

Another signature characteristic of regularization i tha effectiveness of regularization increases
as capacity (e.g., the number of hidden units) increastestekly trading off one constraint on the
model complexity for another. In this experiment we explberelationship between the number of
units per layer and the effectiveness of unsupervisedrpmeitg. The hypothesis that unsupervised
pre-training acts as a regularizer would suggest that waldlsee a trend of increasing effectiveness
of unsupervised pre-training as the number of units perlag@increased.

We trained models oMNIST with and without pre-training using increasing layer siz&s,
50, 100, 200, 400, 800 units per layer. Results are showngiar€i9. Qualitatively similar results
were obtained orshapeset In the case of SDAE, we were expecting the denoising piehtiga
procedure to help classification performance most for léagers; this is because the denoising
pre-training allows useful representations to be learndfie over-complete case, in which a layer
is larger than its input (Vincent et al., 2008). What we otssas a more systematic effect: while
unsupervised pre-training helps for larger layers and eleegtworks, it also appears to hurt for too
small networks.

Figure 9 also shows that DBNs behave qualitatively like SBAE the sense that unsupervised
pre-training architectures with smaller layers hurts genfance. Experiments dnfiniteMNIST
reveal results that are qualitatively the same. Such arriemeet seemingly points to a re-verification
of the regularization hypothesis. In this case, it woulchs#igat unsupervised pre-training acts as an
additional regularizer for both DBN and SDAE models—on téphe regularization provided by
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Figure 9: Effect of layer size on the changes brought by ueisiged pre-training, for networks
with 1, 2 or 3 hidden layers. Experiments OWNIST. Error bars have a height of two
standard deviations (over initialization seed). Preatraj hurts for smaller layer sizes
and shallower networks, but it helps for all depths for lamgtworks.

the small size of the hidden layers. As the model size deesdfasm 800 hidden units, the general-
ization error increases, and it increases more with unsigast pre-training presumably because of
the extra regularization effect: small networks have atkohicapacity already so further restricting
it (or introducing an additional bias) can harm generalimat Such a result seems incompatible
with a pure optimization effect. We also obtain the resuétt tBBNs and SDAEs seem to have
gualitatively similar effects as pre-training strategies

The effect can be explained in terms of the role of unsupedvige-training as promoting input
transformations (in the hidden layers) that are useful ptucang the main variations in the input
distribution P(X). It may be that only a small subset of these variations asvaet for predicting
the class labeY. When the hidden layers are small it is less likely that tle@sformations for
predictingY are included in the lot learned by unsupervised pre-trginin

7.4 Experiment 4: Challenging the Optimization Hypothesis

Experiments 1-3 results are consistent with the reguldmizehypothesis and Experiments 2—-3
would appear to directly support the regularization hypsif over the alternative—that unsuper-
vised pre-training aids in optimizing the deep model olyectunction.

In the literature there is some support for the optimizatigpothesis. Bengio et al. (2007)
constrained the top layer of a deep network to have 20 unidsnagasured the training error of
networks with and without pre-training. The idea was to pr#vthe networks from overfitting the
training error simply with the top hidden layer, thus to mékelearer whether some optimization
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effect (of the lower layers) was going on. The reported tngirand test errors were lower for pre-
trained networks. One problem with the experimental pgradised by Bengio et al. (2007) is their
use of early stopping. This is problematic because, asquslji mentioned, early stopping is itself
a regularizer, and it can influence greatly the trainingrethiat is obtained. It is conceivable that if
Bengio et al. (2007) had run the models to convergence, thdtsecould have been different. We
needed to verify this.

Figure 10 shows what happens without early stopping. Theitig error is still higher for
pre-trained networks even though the generalization é&tomwer. This result now favors the regu-
larization hypothesis against the optimization story. ¥whay have happened is that early stopping
prevented the networks without pre-training from moving touch towards their apparent local
minimum.

10 T T T T T
»— 3 layers without pre-training
@@ 3 layers with denoising auto-encoder pre-training

log(test NLL)

107 10
log(train NLL)

Figure 10: FOMNIST, a plot of the log(train NLL) vs. log(test NLL) at each epodttraining. The
top layer is constrained to 20 units.

7.5 Experiment 5: Comparing pre-training to L; and L, regularization

An alternative hypothesis would be that classical ways gtilerizing could perhaps achieve the
same effect as unsupervised pre-training. We investigdtedeffect ofL; andL, regularization
(i.e., adding d|8||1 or ||8]|3 term to the supervised objective function) in a network withpre-
training. We found that while in the case MNIST a small penalty can in principle help, the gain is
nowhere near as large as it is with pre-training. RtimiteMNIST , the optimal amount df; and

L, regularization is zeré?

13. Which is consistent with the classical view of regulatian, in which its effect should diminish as we add more and
more data.

603



ERHAN, BENGIO, COURVILLE, MANZAGOL, VINCENT AND BENGIO

This is not an entirely surprising finding: not all regulafig are created equal and these results
are consistent with the literature on semi-superviseditrgithat shows that unsupervised learning
can be exploited as a particularly effective form of regakion.

7.6 Summary of Findings: Experiments 1-5

So far, the results obtained from the previous experimeoitst powards a pretty clear explanation
of the effect of unsupervised pre-training: namely, tratifect is a regularization effect. We have
seen that it is not simply sufficient to sample random weiglits the same magnitude: the (data-
dependent) unsupervised initialization is crucial. Weehalgo observed that canonical regularizers
(L1/L2 penalties on the weights) do not achieve the same level &npeance.

The most compelling pieces of evidence in support of thelagiation hypothesis are Figures
8 and 9. The alternative explanation—that unsupervisedrpmging has an optimization effect—
suggested by Bengio et al. (2007) doesn’t seem to be supdoyteur experimental setup.

8. The Online Learning Setting

Our hypothesis included not only the statistical/phenostmgical hypothesis that unsupervised
pre-training acted as a regularizer, but also contains damésm for how such behavior arises both
as a consequence of the dynamic nature of training—follgveirstochastic gradient through two
phases of training and as a consequence of the non-conafithig supervised objective function.

In our hypothesis, we posited that early examples inducagds in the magnitude of the
weights that increase the amount of non-linearity of thevoet, which in turn decreases the num-
ber of regions accessible to the stochastic gradient degceocedure. This means that the early
examples (be they pre-training examples or otherwise)mte the basin of attraction for the re-
mainder of training; this also means that the early exanmipde® a disproportionate influence on
the configuration of parameters of the trained models.

One consequence to the hypothesized mechanism is that wid wadict that in the online
learning setting with unbounded or very large data setsbétavior of unsupervised pre-training
would diverge from the behavior of a canonical regularigy (). This is because the effectiveness
of a canonical regularizetecreasess the data set grows, whereas the effectiveness of unssgubrv
pre-training as a regularizer igaintained as the data set grows.

Note that stochastic gradient descent in online learniagstechastic gradient descent optimiza-
tion of the generalization error, so good online error impiple implies that we are optimizing well
the generalization error. Indeed, each grad?égy) for example(x,y) (with L(x,y) the supervised
loss with inputx and labely) sampled from the true generating distributiB(x,y) is an unbiased

Monte-Carlo estimator of the true gradient of generalaragrror, that isy, [, aLé’g") P(x,y)dx

In this section we empirically challenge this aspect of thedthesis and show that the evidence
does indeed support our hypothesis over what is more typieapected from a regularizer.

8.1 Experiment 6: Effect of Pre-training with Very Large Data Sets

The results presented here are perhaps the most surprisilivgg of this paper. Figure 11 shows the

online classification error (on the next block of examplesaanoving average) for 6 architectures

that are trained omfiniteMNIST  : 1 and 3-layer DBNs, 1 and 3-layer SDAE, as well as 1 and
3-layer networks without pre-training.

604



WHY DOESUNSUPERVISEDPRE-TRAINING HELP DEEPLEARNING?

Budget of 10 million iterations
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-e-1 layer with denoising auto-encoder pre-training 9
—o—3 layers with denoising auto-encoder pre-training
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Figure 11: Comparison between 1 and 3-layer networks tlaomeénfiniteMNIST . Online classi-
fication error, computed as an average over a block of lagD00Gerrors.

We can draw several observations from these experimentst, Bilayer networks without
pre-training are worse at generalization, compared to theydr equivalent. This confirms the
hypothesis that even in an online setting, optimization eém networks is harder than shallow
ones. Second, 3-layer SDAE models seem to generalize le#ter3-layer DBNs. Finally and
most importantly, the pre-training advantage does notsbaas the number of training examples
increases, on the contrary.

Note that the number of hidden units of each model is a hypanpeter* So theoretical results
suggest that 1-layer networks without pre-training shawldrinciple be able to represent the input
distribution as capacity and data grow. Instead, withoattpining, the networks are not able to
take advantage of the additional capacity, which againtpaowards the optimization explanation.
It is clear, however, thathe starting point of the non-convex optimization matters even for
networks that are seemingly “easier” to optimize (1-layee$), which supports our hypothesis.

Another experiment that shows the effects of large-scdie@stochastic non-convex optimiza-
tion is shown in Figure 12. In the setting lofiniteMNIST ~ , we compute the error on thiaining
set in the same order that we presented the examples to the snatlelobserve several interesting
results: first, note that both models are better at clasgjfymore recently seen examples. This is a
natural effect of stochastic gradient descent with a con$tarning rate (which gives exponentially
more weight to recent examples). Note also that exampldseabdginning of training are essen-
tially like test examples for both models, in terms of erféinally, we observe that the pre-trained

14. This number was chosen individually for each model set.error on the last 1 million examples is minimized. In
practice, this meant 2000 units for 1-layer networks and1@tits/layer for 3-layer networks.
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classification error in percent

+— 1-layer network without pretraining
e—e 1-layer network with RBM pre-training

1 1 1
0'0%.0 0.2 0.4 0.6 0.8 1.0
training sample le7

Figure 12: Error of 1-layer network with RBM pre-trainingdawithout, on the 10 million examples
used for training it. The errors are calculated in the sarderdifrom left to right, above)
as the examples were presented during training. Each earardoresponds to a block
of consecutive training examples.

model is better across the board the training setThis fits well with the optimization hypothesis,
since it shows that unsupervised pre-training has an opdiioin effect.

What happens in this setting is that the training and geizetain errors converge as the em-
pirical distribution (defined by the training set) converde the true data distribution. These results
show that the effectiveness of unsupervised pre-trainoes shot diminish with increasing data set
sizes. This would be unexpected from a superficial undedstgrof unsupervised pre-training as
a regularization method. However it is entirely consisteith our interpretation, stated in our
hypothesis, of the role of unsupervised pre-training indhkne setting with stochastic gradient
descent training on a non-convex objective function.

8.2 Experiment 7: The Effect of Example Ordering

The hypothesized mechanism implies, due to the dynamiesaafing—the increase in weight mag-
nitude and non-linearity as training proceeds, as well aslépendence of the basin of attraction on
early data—that, when training with stochastic gradiestdat, we should see increased sensitivity
to early examples. In the case lofiniteMNIST ~ we operate in an online stochastic optimization
regime, where we try to find a local minimum of a highly nonsenobjective function. It is then
interesting to study to what extent the outcome of this opttion is influenced by the examples
seen at different points during training, and whether thdy examples have a stronger influence
(which would not be the case with a convex objective).

To quantify the variance of the outcome with respect to ingisamples at different points dur-
ing training, and to compare these variances for modelsawithwithout pre-training, we proceeded
with the following experiment. Given a data set with 10 roiliexamples, we vary (by resampling)
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the first million examples (across 10 different random dresesnpling a different set of 1 million
examples each time) and keep the other ones fixed. Afteinigaihe (10) models, we measure the
variance (across the 10 draws) of thetputof the networks on a fixed test set (i.e., we measure the
variance in function space). We then vary the next millioaragles in the same fashion, and so on,
to see how much each of the ten parts of the training set irdedethe final function.

Variance of the output
8 T T T T T T T
K % =< 1-layer network without pretraining
: @ -@1-layer network with RBM pre-training

~
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Figure 13: Variance of the output of a trained network wittager. The variance is computed as
a function of the point at which we vary the training samplsste that the @5 mark
corresponds to the start of pre-training.

Figure 13 shows the outcome of such an analysis. The samplles beginning® do seem to
influence the output of the networks more than the ones atritietéowever, this variance lewer
for the networks that have been pre-trained. In additiomab, tone should note that the variance of
pre-trained network at.@5 (i.e., the variance of the output as a function of the fastsles used for
supervised training) iBwer than the variance of the supervised network.at @uch results imply
that unsupervised pre-training can be seen as a sort oficari@duction technique, consistent with
a regularization hypothesis. Finally, both networks areamofluenced by théast examplesised
for optimization, which is simply due to the fact that we usechastic gradient with a constant
learning rate, where the most recent examples’ gradiena lgasater influence.

These results are consistent with what our hypothesisgigedioth the fact that early examples
have greater influence (i.e., the variance is higher) andpiteatrained models seem to reduce this
variance are in agreement with what we would have expected.

15. Which araunsupervise@xamples, for the red curve, until the28 mark in Figure 13.
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8.3 Experiment 8: Pre-training only k layers

From Figure 11 we can see that unsupervised pre-trainingsngiiite a difference for 3 layers, on
InfiniteMNIST . In Figure 14 we explore the link between depth and unsugedvpre-training in
more detail. The setup is as follows: for bdéiNIST and InfiniteMNIST we pre-train only the
bottomk layers and randomly initialize the tap— k layers in the usual way. In this experiment,
n= 3 and we vank from 0 (which corresponds to a network with no pre-trainitalk = n (which
corresponds to the normal pre-trained case).

For MNIST, we plot the log(train NLL) vs. log(test NLL) trajectorieghere each point corre-
sponds to a measurement after a certain number of epochstrajéetories go roughly from the
right to left and from top to bottom, corresponding to the doing of the training and test errors.
We can also see that models overfit from a certain point orsvard

3-layer net, total of 10000000 iterations
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10 - — - : H : ] == bottom 0 pretrained
—e no»pretralnlng : : B | = bottom 1 pretrained
v— pretrain 1st layer ] i ~—— bottom 2 pretrained
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=~ pretrain 1st and 2nd layers 10 8
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£
[
c
- O 10 =
2 T
= o
4 : =
£ : a
=3 : &
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Figure 14: On the left for MNIST, a plot of the log(train NLL) vs. log(test NLL) at each epodh o
training. We pre-train the first layer, the first two layersiatl three layers using RBMs
and randomly initialize the other layers; we also compaté thie network whose layers
are all randomly initialized.On the right InfiniteMNIST , the online classification
error. We pre-train the first layer, the first two layers orthitee layers using denoising
auto-encoders and leave the rest of the network randontiglinéd.

For InfiniteMNIST , we simply show the online error. The results are ambiguoms the
difficulty of optimizing the lower layers versus the higheres. We would have expected that the
largest incremental benefit came from pre-training the fager or first two layers. It is true for
the first two layers, but not the first. As we pre-train moreelay the models become better at
generalization. In the case of the finMNIST, note how the final training error (after the same
number of epochs) becomasrsewith pre-training of more layers. This clearly brings adutial
support to the regularization explanation.
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9. Discussion and Conclusions

We have shown that unsupervised pre-training adds rolasstoea deep architecture. The same set
of results also suggests that increasing the depth of aiitertiire that is not pre-trained increases
the probability of finding poor apparent local minima. Prairied networks give consistently better
generalization. Our visualizations point to the obseoratithat pre-trained networks learn qual-
itatively different features (if networks are visualizedthe weight space) compared to networks
without pre-training. Moreover, the trajectories of netiwith different initialization seeds seem
to fall into many distinct apparent local minima, which agam different (and seemingly far apart)
depending on whether we use pre-training or not.

We have shown that unsupervised pre-training is not simplyag of getting a good initial
marginal distribution, and that it captures more intricédépendencies between parameters. One of
our findings is that deep networks with unsupervised piieitrg seem to exhibit some properties of
aregularizer: with small enough layers, pre-trained deefpiectures are systematically worse than
randomly initialized deep architectures. Moreover, whHenltyers are big enough, the pre-trained
models obtain worse training errors, but better genettidiagerformance. Additionally, we have
re-done an experiment which purportedly showed that unsigeel pre-training can be explained
with an optimization hypothesis and observed a regulaozatffect instead. We also showed that
classical regularization techniques (sucligd_, penalties on the network weights) cannot achieve
the same performance as unsupervised pre-training, anthéhaffect of unsupervised pre-training
does not go away with more training data, so if unsupervigedtraining is a regularizer, it is
certainly of a rather different kind.

The two unsupervised pre-training strategies considedmheising auto-encoders and Restricted
Boltzmann Machines—seem to produce qualitatively sindlaservations. We have observed that,
surprisingly, the pre-training advantage is present engnd case of really large training sets, point-
ing towards the conclusion that the starting point in the-aonvex optimization problem is indeed
quite important; a fact confirmed by our visualizations dkfi at various levels in the network.
Finally, the other important set of results show that unsuped pre-training acts like a variance
reduction technique, yet a network with pre-training hasveekr training error on a very large data
set, which supports an optimization interpretation of tfiect of pre-training.

How do we make sense of all these results? The contradicétwelen what looks like regular-
ization effects and what looks like optimization effectpaars, on the surface, unresolved. Instead
of sticking to these labels, we attempted to draw a hypahesscribed in Section 3 about the
dynamics of learning in an architecture that is trained gi$ivo phases (unsupervised pre-training
and supervised fine-tuning), which we believe to be consistéh all the above results.

This hypothesis suggests that there are consequences obiheonvexity of the supervised
objective function, which we observed in various ways tiglmout our experiments. One of these
consequences is that early examples have a big influences @utbome of training and this is one
of the reasons why in a large-scale setting the influence eifparvised pre-training is still present.
Throughout this paper, we have delved on the idea that tHa bhattraction induced by the early
examples (in conjunction with unsupervised pre-trainisgjor all practical purposes, a basin from
which supervised training does not escape.

This effect can be observed from the various visualizateamd performance evaluations that
we made. Unsupervised pre-trainingas a regularizer that only influences the starting point of
supervised training, has an effect that, contrary to cleakregularizers, does not disappear with
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more data(at least as far as we can see from our results). Basicabypervised pre-training favors
hidden units that compute features of the injuthat correspond to major factors of variation in
the trueP(X). Assuming that some of these are near features useful datfngdvariations inY,
unsupervised pre-training sets up the parameters neautosobf low predictive generalization
error.

One of the main messages that our results imply is that theniattion of a non-convex ob-
jective function with stochastic gradient descent presehillenges for analysis, especially in a
regime with large amounts of data. Our analysis so far shbassit is possible for networks that
are trained in such a regime to be influenced more by early ple@m This can pose problems in
scenarios where we would like our networks to be able to capthore of the information in later
examples, that is, when training from very large data salstigting to capture a lot of information
from them.

One interesting realization is that with a small training g& do not usually put a lot of impor-
tance on minimizing the training error, because overfittghg major issue; the training error is not
a good way to distinguish between the generalization pmdioce of two models. In that setting,
unsupervised pre-training helps to find apparent localmanihat have better generalization error.
With a large training set, as we saw in Figure 12, the empignd true distributions converge. In
such a scenaridjnding a better apparent local minimum will matter and sgen (better) opti-
mization strategies should have a significant impact on ggization when the training set is very
large. Note also that it would be interesting to extend our expernital techniques to the problem
of training deep auto-encoders (with a bottleneck), wheegipus results (Hinton and Salakhutdi-
nov, 2006) show that not only test error but also trainin@reis greatly reduced by unsupervised
pre-training, which is a strong indicator of an optimizatieffect. We hypothesize that the pres-
ence of the bottleneck is a crucial element that distingegghe deep auto-encoders from the deep
classifiers studied here.

In spite of months of CPU time on a cluster devoted to the exymts described here (which
is orders of magnitude more than most previous work in thegarmore could certainly be done
to better understand these effects. Our original goal waswte well-controlled experiments with
well understood data sets. It was not to advance a partiald@rithm but rather to try to better
understand a phenomenon that has been well documentechetseviNonetheless, our results are
limited by the data sets used and it is plausible that diffecenclusions could be drawn, should the
same experiments be carried out on other data.

Our results suggest that optimization in deep networks isnapticated problem that is influ-
enced in great part by the early examples during trainingurework should clarify this hypothesis.
If it is true and we want our learners to capture really coogiéd distributions from very large train-
ing sets, it may mean that we should consider learning dlguos that reduce the effect of the early
examples, allowing parameters to escape from the attgaictavhich current learning dynamics get
stuck.

The observations reported here suggest more detailednatjgias than those already discussed,
which could be tested in future work. We hypothesize thafdlotors of variation present in the in-
put distribution are disentangled more and more as we gotierimput layer to higher-levels of the
feature hierarchy. This is coherent with observations afdasing invariance to geometric transfor-
mations in DBNSs trained on images (Goodfellow et al., 20@8)well as by visualizing the varia-
tions in input images generated by sampling from the modaitéid, 2007; Susskind et al., 2008),
or when considering the preferred input associated wiflerdint units at different depths (Lee et al.,
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2009; Erhan et al., 2009). As a result, during early stagdsawhing, the upper layers (those that
typically learn quickly) would have access to a more robapt@sentation of the input and are less
likely to be hindered by the entangling of factors variatigoresent in the input. If this disentan-
gling hypothesis is correct, it would help to explain how wpervised pre-training can address the
chicken-and-egg issue explained in Section 2: the lowesrtapf a supervised deep architecture
need the upper layers to define what they should extract, @eeversa. Instead, the lower layers
can extract robust and disentangled representations d&¢hars of variation and the upper layers
select and combine the appropriate factors (sometimeslinait the top hidden layer). Note that
as factors of variation are disentangled, it could also baghat some of them are not propagated
upward (before fine-tuning), because RBMs do not try to megwein their hidden layer input bits
that are independent.

To further explain why smaller hidden layers yield worsefgenance with pre-training than
without (Figure 9), one may hypothesize further that, fomeodata sets, the leading factors of
variation present if?(X) (presumably the only ones captured in a smaller layer) asegeedictive
of Y than random projectiof$ can be, precisely because of the hypothesized disentgreffiect.
With enough hidden units, unsupervised pre-training magaekamong the larger set of learned
features some that are highly predictiveYo{fmore so than random projections). This additional
hypothesis could be tested by measuring the mutual inféomaietween each hidden unit and the
object categories (as done by Lee et al., 2009), as the nuafibédden units is varied (like in
Figure 9). Itis expected that the unit with the most mutudrimation will be less informative with
pre-training when the number of hidden units is too smalll more informative with pre-training
when the number of hidden units is large enough.

Under the hypothesis that we have proposed in Section 3ptleving result is unaccounted
for: in Figure 8(a), training error is lower with pre-tramg when there is only one hidden layer,
but worse with more layers. This may be explained by the Wolg additional hypothesis. Al-
though each layer extracts information ab¥unh some of its features, it is not guaranteed that all
of that information is preserved when moving to higher laygdne may suspect this in particular
for RBMs, which would not encode in their hidden layer anyunpits that would be marginally
independent of the others, because these bits would beireglay the visible biases: perfect dis-
entangling ofy from the other factors of variation M may yield marginally independent bits about
Y. Although supervised fine-tuning should help to bubble g thformation towards the output
layer, it might be more difficult to do so for deeper networksplaining the above-stated feature of
Figure 8. Instead, in the case of a single hidden layer, [dssmation aboul would have been
dropped (if at all), making the job of the supervised out@yel easier. This is consistent with
earlier results (Larochelle et al., 2009) showing that &wesal data sets supervised fine-tuning sig-
nificantly improves classification error, when the outpyelaonly takes input from the top hidden
layer. This hypothesis is also consistent with the obsenvahade here (Figure 1) that unsupervised
pre-training actually does not help (and can hurt) for toepdeetworks.

In addition to exploring the above hypotheses, future wdrbudd include an investigation of
the connection between the results presented in this papdneHinton and Salakhutdinov (2006),
where it seems to be hard to obtain a good training reconiruerror with deep auto-encoders (in
an unsupervised setting) without performing pre-traini@ther avenues for future work include
the analysis and understanding of deep semi-superviséditees where one does not separate

16. Meaning the random initialization of hidden layers.
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between the pre-training phase and the supervised phateaswork by Weston et al. (2008) and
Larochelle and Bengio (2008). Such algorithms fall moressgly into the realm of semi-supervised
methods. We expect that analyses similar to the ones werpertbwould be potentially harder, but
perhaps revealing as well.

Many open questions remain towards understanding and inmgraleep architectures. Our
conviction is that devising improved strategies for leagnin deep architectures requires a more
profound understanding of the difficulties that we face lithm. This work helps with such under-
standing via extensive simulations and puts forward a thgxi$ explaining the mechanisms behind
unsupervised pre-training, which is well supported by @suits.
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