Graphene-Info launches a new version of its CVD Graphene Market Report

Today we published a new edition of our CVD Graphene Market Report, with all the latest information on this exciting material and market. The CVD graphene market is slowly emerging as applications and projects are increasing and the future looks bright for high-end graphene nanomaterials.

Reading this report, you'll learn all about:

  • How does CVD graphene differ from other graphene types
  • CVD graphene properties
  • Possible applications for CVD graphene
  • Available materials on the market

The report package also provides:

  • A list of prominent CVD graphene research activities
  • A list of all CVD graphene developers and their products
  • Datasheets and brochures from over 10 different CVD graphene makers
  • Free updates for a year

This CVD Graphene market report provides a great introduction to CVD graphene materials and applications, and covers everything you need to know about graphene produced by CVD. This is a great guide for anyone interested in applying CVD graphene in their products, or learning more about this promising new technology.

Read the full story Posted: Mar 25,2024

Directa Plus enters collaboration with Heathcoat to advance graphene-enhanced textiles

Directa Plus recently announced a new collaboration with Heathcoat Fabrics that aims "to drive groundbreaking advancements in technical textiles". Heathcoat Fabrics is a manufacturer of advanced knitted and woven fabrics located in Tiverton, England.

The company said: "Integrating Directa Plus' G+ Planar Thermal Circuit technology into Heathcoat fabrics portfolio is central to this collaboration. This union is optimized to provide excellent thermal dissipation properties, helping to control and regulate the user's body temperature...It also enables strong surface resistivity, making it suitable for various anti-static applications."

Read the full story Posted: Mar 25,2024

2D Fab joins consortium for next-gen bio-adhesives

2D Fab has become a partner of the new consortium BioGlue-Centre, a collaborative initiative to make Sweden a front runner in the development of bio-based adhesives. 

BioGlue-Centre is a collaborative effort between three universities and 12 companies, including 2D Fab. With a shared focus on advancing adhesive technologies, the Centre addresses the critical need for sustainability by accelerating the development of bio-based alternatives within the adhesive industry.

Read the full story Posted: Mar 24,2024

Researchers create graphene-integrated bioelectronic mesh for tracking multimodal excitation-contraction dynamics in cardiac microtissues

Researchers at the University of Massachusetts and Massachusetts Institute of Technology (MIT) have successfully built a tissue-like bioelectronic mesh system integrated with an array of graphene sensors that can simultaneously measure both the electrical signal and the physical movement of cells in lab-grown human cardiac tissue.

A bioelectronic mesh, studded with graphene sensors (red), can measure the electrical signal and movement of cardiac tissue (purple and green) at the same time. Image credit: UMass Amherst
 

The tissue-like mesh can grow along with the cardiac cells, allowing researchers to observe how the heart’s mechanical and electrical functions change during the developmental process. The new device can be extremely useful for those studying cardiac disease as well as those studying the potentially toxic side-effects of many common drug therapies.

Read the full story Posted: Mar 22,2024

First Graphene announces low-cost, high-performing graphene-based electrocatalysts

First Graphene has developed a low-cost, high-performing graphene-based electrocatalyst that targets the rapidly growing production of ‘green hydrogen’ by water electrolysis. Electrocatalysts are used to produce ‘green hydrogen’, but currently require high-cost rare metals such as iridium and ruthenium which can drive up operating costs. First Graphene’s solution uses its PureGRAPH® technology to produce higher-performing, affordable electrocatalysts.

First Graphene has completed a 12-month project in the United Kingdom to develop low-cost, high-performing electrocatalysts for hydrogen production.

Read the full story Posted: Mar 21,2024

Levidian unveils graphene-enhanced prototype truck tire

Levidian has unveiled its first prototype truck tire, combining graphene with carbon black in a new tread formulation. Launched this week at the Tire Technology Expo in Hannover, the graphene-enhanced natural rubber and butadiene rubber tire tread compound, typically used in commercial vehicle tires, has been shown to deliver significant improvements in the mechanical and dynamic properties of the tire.

Independent testing by the Tun Abdul Razak Research Centre (TARRC) has reportedly shown that the addition of Levidian’s 'net zero graphene' can deliver a reduction in rolling resistance of around 23%. Initial results have also indicated potential for reduced compound density that could allow for lighter tires overall. It was said that overall, this could deliver substantial improvements in fuel efficiency of 3-4%.  

Read the full story Posted: Mar 20,2024

Researchers develop approach for creating tight arrangement of bilayer alkali metals between graphene layers for improved batteries

Researchers at AIST, Osaka University, Tokyo Polytechnic University, Kyushu University, and National Tsing Hua University, have developed a technique to insert alkali metals (AMs) into the interlayers of graphene. They them used low-voltage scanning transmission electron microscopy (LV-STEM) to visualize the atomic structure of the intercalated AMs (potassium, rubidium, and cesium) in the bilayer graphene (BLG). The team's findings revealed that the intercalated AMs adopt bilayer structures with hcp stacking, and specifically a C6M2C6 composition. 

The performance of rechargeable batteries is a key factor influencing the driving distance of electric vehicles and the usage time of smartphones. Improving the performance of these electronic devices is possible if rechargeable batteries can accumulate greater electrical capacities. Graphite, the electrode material used in batteries, is composed of multilayers of graphene, with alkali metals placed between the layers to facilitate the flow of electrons during charging and discharging. Achieving a high density of alkali metals storage between graphene layers could increase the electric capacity.

Read the full story Posted: Mar 19,2024