Phys. Med. Biol 56 (2011) 71457162 doi:10.1088/0031-9155/56/22/010

A GPU implementation of EGSnrc’'s Monte Carlo
photon transport for imaging applications

Jonas Lippuner'? and Idris A Elbakrit34

1 Department of Physics and Astronomy, University of Manitobinnipeg, Manitoba,

R3T 2N2, Canada

2 Department of Mathematics, University of Manitoba, Winnipktgnitoba, R3T 2N2, Canada
3 Department of Radiology, University of Manitoba, Winnip&gnitoba, R3T 2N2, Canada

4 CancerCare Manitoba, Department of Medical Physics, 675dvicidt Ave, Winnipeg,
Manitoba, R3E 0V9, Canada

E-mail: jonas@lippuner.ca

Received 25 May 2011, in final form 25 August 2011
Published 25 October 2011
Online atstacks.iop.org/PMB/56/7145

Abstract

EGSnrcis a well-known Monte Carlo simulation package fapted electron—
photon transport that is widely used in medical physics iappbn. This
paper proposes a parallel implementation of the photorsp@n mechanism
of EGSnrc for graphics processing units (GPUs) using NVIBIBompute
Unified Device Architecture (CUDA). The implementation ipesifically
designed for imaging applications in the diagnostic eneagnge and does
not model electrons. No approximations or simplificatiofighe original
EGSnrc code were made other than using single floating-poécision instead
of double precision and a different random number generaféo avoid
performance penalties due to the random nature of the Moatk® Gethod,
the simulation was divided into smaller steps that couldleag performed
in a parallel fashion suitable for GPUs. Speedups of 20 tardéd for 64 to
256° voxels were observed while the accuracy of the simulatichpraserved.
A detailed analysis of the differences between the CUDA &tman and the
original EGSnrc was conducted. The two simulations weradiaio produce
equivalent results for scattered photons and an overaksyatic deviation of
less than 0.08% was observed for primary photons.

(Some figures in this article are in colour only in the elegtrosersion)

1. Introduction

Monte Carlo simulations are widely used to simulate thextdfef ionizing radiation in medical
physics applications, such as radiotherapy treatmentg-aaglimaging (e.g. Raesid&é 476,

Andreo (991, Verhaegen and Seuntjer?003, Rogers 200§). Monte Carlo simulations
can produce highly accurate results, but often require tmmgputation times. A well-known,

http://dx.doi.org/10.1088/0031-9155/56/22/010
mailto:jonas@lippuner.ca
http://stacks.iop.org/PMB/56/7145

GPU implementation of EGSnrc’s Monte Carlo photon transport 2

multi-purpose Monte Carlo simulation package is EGSnronfé&ow et al 2010, which is
designed for coupled transport of electrons and photowsitfir an arbitrary geometry in the
energy range of 1 keV to 10 GeV.

A relatively new approach to accelerating computationadtgnsive simulations is the
use of graphics processing units (GPUSs) instead of cemmakgsing units (CPUs). Over the
last few years, GPUs have evolved from specialized micke®ssors for graphics rendering
to programmable, highly parallel, multi-core processbet tan be used for general-purpose
computations (Blyth@008. Modern GPUs consist of hundreds of cores capable of execut
thousands of instances of a single program simultaneoutydifferent input data. NVIDIA
developed the Compute Unified Device Architecture (CUDAV[DIA 201(), which is
a high-level GPU programming interface for C. With CUDA, oren write programs that
execute on NVIDIA GPUs and take full advantage of the paratiehitecture.

Parallel programming with GPUSs, specifically using CUDAs lieeen successfully used
to accelerate codes and simulations in various fields oinseidy up to three orders of
magnitude (e.g. Shiraldt al (2009, Januszewskia and Kostl#(q10). Various Monte Carlo
simulations have seen significant speedups of one, two eetbrders of magnitude when
implemented with CUDA (e.g. Preist al (2009, Gulati and Khatri 2009, Alerstamet al
(2008). GPU computing has also become popular in medical phyBietx and Xing2011).
For example, GPU implementations of a ray tracing algori{espréset al 2008 and
radiotherapy treatment planning (@t al 2009 Men et al 2009 Lo et al 2009 achieved
significant speedups.

Some work has been carried out in accelerating Monte Camalations for coupled
electron—photon transport. J& al (2010 implemented the dose planning method (DPM)
(Sempauet al 2000 with CUDA and achieved a speedup of 4.5 to 5.5 times. Hissoin
et al(2011) developed a new GPU code for coupled electron—photongoahwith emphasis
on dose calculation. They achieved a speedup of more thani®@8 over EGSnrc and
good agreement between their simulation results and EGSnBadal and Badana2009
implemented the photon interaction models of PENELOPE 2&¥vatet al 2006 and
achieved a speedup of up to 27 times for x-ray simulations.

In this paper, we present an implementation of the Monte cCpHoton transport
mechanism of EGSnrc for CUDA. The main goal of this work is taker the simulation
faster by implementing it for GPUs without changing the brég method or introducing
any approximations. The only exceptions to this are that sesaudifferent random number
generator (RNG) that is more suited for GPUs, and that weingéedloating-point precision
instead of double precision, because current GPUs are iaptinfior single precision. The
code presented in this paper is specifically designed fogimgaapplications and only
simulates photons propagating through a voxelized voluBwse scoring and electrons are
not implemented.

Note that there are many other techniques to improve theiesftig of EGSnrc and
reduce the simulation time. For example, Kawrakow and Hi#@#00 investigated numerous
variance reduction techniques and the Woodcock trackiggrithm (Woodcoclet al 1969,
also known ag-scattering, is capable of producing a significant speedujrfaging oriented
simulations such as this. However, such methods are noidsyed in this paper since our goal
is to achieve a speedup solely by using CUDA. Furthermongnaodification to the EGSnrc
code that would make it run faster can also be implementediifCDA version and would
thus make that run faster too.

This paper is organized as follows: sect®provides some technical background about
the CUDA architecture and the functionality of EGSnrc. 8818 gives a detailed description
of our implementation with CUDA and the experiments thateveerformed to measure the

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 3

Table 1. Important terms related to CUDA.

Kernel Function that is executed on the GPU

Thread One instance of a kernel executing on the GPU

Warp Group of 32 threads executing concurrently on a multiprocessor
Block Larger group of threads that can communicate via shared nyemor
Global memory Largest but slowest memory on the GPU that all thresdlaccess
Registers Fast but limited private memory of one thread (32 bits peteegis

speedup and accuracy of our code. The results of the exp@graee presented in sectidn
and discussed in sectién

2. Background

2.1. The CUDA architecture

Table1 shows some of the most important terms related to CUDA uséuisrpaper. When
programming with CUDA, the main program is executed on th@JGid only certain
functions, calleckernels are executed on the GPU. When a kernel is executed, thousands
of threadsare created on the GPU and each thread executes one instatiee kernel
simultaneously with other threads. Threads are groupedbioicksand all threads within
the same block can communicate with each other through éimaeenory (NVIDIA 201,
chapter 2). Furthermore, all threads can access the glnbal memoryspace, which is the
largest memory space (several gigabytes on modern cards)ldo the slowest. Each thread
has a set of privateegisterswhich are used to store intermediate results. One registds 32
bits, e.g. one float. Accessing registers is fast, but thelreurof available registers is limited
(NVIDIA 201(n, section 3.2).

The GPU itself consists of several multiprocessors andpheithread blocks can be active
at the same time on a single multiprocessor. Each multigsmraalways executes groups of 32
threads, called warp, in parallel. The multiprocessors switch between diffeemtive warps
to hide the memory latencies associated with reading antihgdata from and to memory.
While at any given time only instructions for 32 threads arwialty executed in parallel on
each multiprocessor, there are hundreds of active warpmpkiprocessor that are running
simultaneously (NVIDIA201(, chapter 4).

The instructions for one warp are executed in a single ingtm multiple data (SIMD)
fashion. Ideally, all threads in the warp perform the sameutation on different data. Full
efficiency is achieved when all threads share the same ézaquth. If the execution paths
of some threads diverge because of data-dependent cargditiee different branches will be
executed serially, which can drastically decrease theopmednce. It is therefore imperative
that the threads in a warp diverge as little as possible. @hig applies to the threads in
the same warp, because different warps execute indepéndeany case (NVIDIA201G,
chapter 6).

2.2. Functionality of EGSnrc

EGSnrc uses random inputs following empirical or theoedtdtistributions to simulate the
propagation of one particle (photon, electron or positthnpugh the simulation geometry.
This is called @istory, and many histories are simulated to obtain the final siraratsult.

A history is started by determining the initial propertidstize particle and then calling the

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 4

subroutineSHOWER. During the simulation, secondary particles may be credtbdstackis the
list of all particles active in the history and contains athperties of the particles, e.g. energy,
position, direction, etc.SHOWER transports all particles on the stack through the simulatio
geometry until all are discarded because they leave thelaiimn geometry or their energy
falls below a cutoff. SHOWER calls the subroutineBH0TON andELECTR, which handle photon
and electron/positron transport, respectively. Theseswwoutines call other subroutines to
simulate different interactions. They also ¢@lWFAR andHOWNEAR, which are supplied by the
user to specify the simulation geometry; this is calledubker code The subroutindUSGAB

is called before and after different events and can be usegtinser code for scoring various
quantities (Kawrakovet al201Q section 3.2).

The EGSnrc core and many of its most widely used user codesréten in Mortran,
which is a macro language that generates Fortran code. TI®nEGC++ class library
(Kawrakow et al 2009 provides a C++ interface for EGSnrc and allows one to wrieru
codes in C++ without having to write a single line of MortrarF@rtran. However, such C++
user code still uses the Mortran/Fortran core of EGSnrcithptements the actual Monte
Carlo simulation and the physics model.

3. Methods

3.1. Implementation with CUDA

In this work, we concentrate on the photon transport modet.i@plementation is specific to
imaging a voxelized volume onto an image plane; hence wecestrselves to the transport
of photons only and completely ignore electrons.

3.1.1. Parallelization of the simulationParallelizing the simulation is not as simple as
running multiple histories in parallel since the individlitrdstories diverge very quickly. If
each thread runs one history, the warps will probably di¥esg strongly that the CUDA
implementation may be slower than the original EGSnrc. foice the divergence, we divide
the simulation of one history into the following steps.

e Create new photorcreate a new photon and start a history; this is equivalesHQWER.

e Transport photon one stepransport a photon one step through the geometry, determine
if an interaction takes place and, if so, which one. This isiejent toPHOTO and
includesHOWFAR for the geometry specification$lOWNEAR is not needed, because it is
only used for electron transport. Since only voxelized wuds are supported, tHOWFAR
implementation of th&GS_XYZGeometry class from the EGSnrc C++ class library is
used.

e Interactions: Rayleigh, Compton, photoelectric and pair productionreatdons are
modeled. The Compton interaction only changes the energylmection of the photon
and does not create an electron. The photoelectric andnoaiugtion interactions simply
destroy the photon without creating other particles.

e Propagate to image plangpropagate a photon that has left the simulation geometry to
the image plane and score its energy in the appropriate. pixel

The CUDA code is written entirely in C. The code pieces of trinvidual simulation steps
were extracted from the original EGSnrc Mortran code anditeam in C. No changes to the
logic of the EGSnrc code were made. The only difference bextvtiee original code and ours
was that the latter used single floating-point precisioteiad of double precision and that in

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 5

Create new photon,
i.e. start new history

Transport photon one step

No interaction

| Rayleigh | | Propagate to image plane | | Photoelectric | | Pair production |

Requested number of
histories reached?

No

Figure 1. Flowchart showing how a history is simulated, what the pdessbmulation steps are
and how they relate to one other.

some cases the flow was changed to make it more suitable fos Gl code still performed
the same calculations in the same manner, so the underliiygigs model was not changed.

Note that we did not implement a step equivalenASGAB. Instead, we integrated the
functionality of AUSGAB into the other parts, e.g. counting scattering events ifuihietions that
model Rayleigh and Compton interactions, or using a spdaffiction for scoring a particular
quantity, like the propagation step.

The calculations for the individual simulation steps aresttyandependent of the current
location, direction and energy of the photon. So, there risoat no divergence between
histories in the same simulation step. But the order of thpssin a particular history is
completely different from the other histories. Hence, ibttiireads run different histories,
they still diverge, but the divergence is easier to handhee flowchart in figurel shows how
a history is simulated, what the possible simulation stepsad how they relate to one other.
A history is complete when the photon leaves the simulatieongetry and is propagated to
the image plane, or when a photoelectric or pair productideraction occurs which simply
destroys the photon. A new history is immediately startekdéfrequested number of histories
has not been reached.

3.1.2. Simulation overview.The main simulation program executes on the CPU and first
initializes the media data, simulation geometry and otlmaukation parameters. The data
required for the simulation are then copied to the GPU andithelation of the histories is
performed on the GPU by repeatedly executing the simul&gomel followed by the summing
kernel until the requested number of histories is reached.

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 6

Read current status of the
stack from global memory

outer loop

Maximum number of
iterations performed?

inner loop

This thread
needs to perform
this step?

Some thread
needs to perform >———
this step? Yes

Go to next possible
simulation step

No No

Perform step
Was this the

last possible step?

All threads

No thread performed a step and the
No requested number of histories was reached?

Write current status of the
stack to global memory

I

Figure 2. Flowchart of the simulation kernel executing on the GPU.

On the GPU, hundreds of histories are calculated in paraliehch thread runs one
history until it is finished and then starts a new one if morgdries need to be simulated.
In the simulation kernel, each thread performs thousandsmilation steps, thus simulating
multiple histories. Once the simulation kernel is finishérgt summing kernel is executed,
which sums up the results of the simulation kernel. The st kernel is then executed
again, followed by the summing kernel, until the simulati®finished. The following sections
describe the two kernels in more detail.

3.1.3. Simulation kernel.Each thread has a private stack that contains exactly ontemho
Figure2 shows a flowchart of the simulation kernel executing on th&GiFhen the kernel is
started, each thread reads the current status of its staokgflobal memory and then keeps the
stack in registers. Then the threads in the same warp steth&rghrough two nested loops.

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 7

In each iteration of the outer loop, each thread performsastione simulation step. To
ensure that no two threads in the same warp perform diffeienitlation steps at the same time,
the threads go together through the inner loop. Each iteratf the inner loop corresponds
to one possible simulation step, i.e. transport step, Comipteraction, Rayleigh interaction,
etc. Those threads that need to perform the current sironlatep perform it while the others
wait. Once each thread has performed at least one step asthedssible simulation step is
reached, the inner loop is finished and the next iteratiohebuter loop is started.

The outer loop is complete if a determined number of iteretioave been performed, or
no thread performed a simulation step and the requestedenohbistories has been reached;
hence, no active particles are left and no new particlesheiltreated. Once the outer loop is
exited, the threads write the current status of their stadk o global memory and then the
summing kernel is executed.

This scheme may seem very complicated and one might thintkatlsmpleswitch
statement would suffice since the GPU would automaticaliyakze the different branches
of theswitch statement in one warp. However, this is problematic bectheseurrent RNG
(see sectior8.1.9 requires all threads in the warp for calculating random bera. With a
switch statement, the threads that are not performing the curientaion step would be
unavailable for calculating random numbers since they dbel in a different section of the
code. But with our looping approach, these inactive threadstill going through the code of
the current step with the other threads and are thus avaifabtalculating random numbers
when needed. The inactive threads are disabled in the seatéhey do not perform any
memory accesses or calculations (except for calculatingaa numbers).

A simple measure for the degree of the divergence in the sitioulis the average number
of different simulation steps performed in the inner lodipd tifferent simulation steps were
performed in one iteration of the outer loop, then each thpeaformed at least one simulation
step, but in totald different simulation steps were performed. Sal is a lower bound for the
fraction of threads that were active on average duringtiiation of the outer loop. Itis only a
lower bound because it is possible that some threads pegtbnmore than one simulation step.
The order in which different steps are performed was chogelmthat the most frequent steps
are performed first, namely transport step, new partictepagation to image plane, Compton
interaction, photoelectric effect, Rayleigh interact&nd pair production. So if in one history
a transport step is performed and it is determined that a @mipteraction will occur next
for this photon, then the Compton interaction is also penteat when the inner loop reaches
that simulation step.

3.1.4. Summing kernelThe scored quantity in our simulation is the energy of phston
arriving at a pixelated image plane. Each element of theirsg@rray corresponds to one

pixel of the image plane and holds the total amount of eneegghing that pixel. Once a

photon leaves the simulation geometry, it is propagatetiedrhage plane in a straight line

determined by its exit location and direction, and its epés@dded to the total energy already
deposited in the pixel where it hits the plane.

Summing up a large number of values using floating-pointharéitic is prone to
compounded rounding errors. One technique to reduce thess & to first sum up fewer
values and then add the subtotals together (L@20. In order to do this, each thread block
has a temporary scoring array that is initialized to zerayetiene the simulation kernel is
launched. During the execution of the simulation kerned,tireads accumulate their results
(in single precision) in the temporary scoring array of thdck. After the simulation kernel
is finished, the summing kernel adds up the temporary scarirays and accumulates those

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 8

subtotals in one total scoring array; this addition is dondduble precision to further reduce
rounding errors.

The temporary and total scoring arrays are stored in globaiany. During the
accumulation of individual energies into the temporarysgparrays in the simulation kernel,
it could happen that two threads need to add the energy of @plto the same pixel. To
avoid data hazards, the threads add the energies of theionzhto the temporary scoring
array using an atomic function, which ensures that the neadify and write operations are
completed without interference from any other threads.

3.1.5. Random number generatoCurrently, the only RNG implemented in the EGSnrc C++
class library, which was used for the EGSnrc simulationRASMAR. It calculates random
numbers serially and is thus not well suited for GPUs. On tieftand, if each thread used
one instance of RANMAR with a different initial seed, too rhughared memory would be
required to store the states. On the other hand, if the threfaghe warp shared one instance of
RANMAR, then only one thread would be used to calculate &lrimdom numbers, because
this is done in a serial way, and the remaining 31 threadsavoglidle. Since many random
numbers are used, this would result in a serious performaecalty.

For this reason, our code uses a different RNG, namely antasfahe Mersenne Twister
(Matsumoto and Nishimuré998 specifically designed for GPUs called Mersenne Twister
for Graphics Processors (MTGP) (Sa#010. The Mersenne Twister is a very widely used
RNG that passes the diehard tests (Matsumoto and Nishib®®& and almost all of the more
stringent TestUO1 tests (L'Ecuyer and Sima&@D7). The Mersenne prime exponent 3217 is
used because it produces a large peridd(2- 1 ~ 10°%%) while only requiring 404 bytes to
store its current state.

The main advantage of MTGP is that the random numbers arelatdd in parallel. Each
warp has its own Mersenne Twister and all the threads in thp aee used to calculate the
random numbers in parallel. There are 101 random numbersistatus array and 32 threads
inawarp. Hence, each thread can use three random numbdrearttie status array has to be
updated; the remaining five random numbers are not usedhdfarore, since all threads are
required to update the status array, when some threads mafpreuse a random number, all
otherthreads also have to advance their counter, but wittobuially using that random number.

The author of MTGP also developed a program to generateusparameter sets for
the MTGP, which was used to generate different parametef@eeach warp. All warps get
the same initial seed, but since they all have differentmpatars, they will produce highly
independent sequences (Matsumoto and Nishir20es).

Since the RNG in our CUDA implementation is different frone thne used in EGSnrc,
our simulation will not produce identical results. Howeude results should be statistically
equivalent to the EGSnrc results, i.e. the difference betwthe CUDA and EGSnrc
simulations should be less than the combined statisticabmiainty. Even if we used
RANMAR in our CUDA implementation, we would still not get tlsame results because our
CUDA code is structured very differently. In EGSnrc one tiigtis simulated after another,
while in CUDA many histories are simulated in parallel. Téfere, even if we had the same
sequence of random numbers, these numbers would be consumedry different way so
that each CUDA history would effectively use a differentseigce of random numbers than
the EGSnrc histories.

3.2. Computational experiments

Two computational experiments comparing our proposed Cliibglementation to EGSnrc
were conducted. The first experiment measured the speedihe &UDA implementation

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 9

Air cube

Water cylinder

| Adipose cylinder
| . Aluminium rods

(. Bone cylinder

. Teflon spheres

Figure 3. Frontal view of the unvoxelized phantom. Different voxeliaas of this phantom were
used in the CUDA and EGSnrc simulations.

versus EGSnrc for various numbers of voxels, and the secrgpdrienent measured the
accuracy of the CUDA results compared to the EGSnrc results.

3.2.1. Simulation setup and hardwareThe phantom used in both experiments was a water
cylinder with 12 cm diameter and height embedded in an aie euith a side length of 12.8 cm.
Two smaller cylinders (3 cm diameter, 10 cm high) consistihone and adipose tissue, as
well as two teflon spheres with 1 cm diameter and various mgcar aluminum rods with
thicknesses ranging from 1 mm to 4 mm, were placed inside #terveylinder. Different
materials were used to test the agreement between the CU@Aatd EGSnrc for weakly
and strongly attenuating media. The phantom was voxelizedhic voxels with 64, 128, 192
and 256 voxels in each dimension for the first experiment &&ifar the second. Figuré
shows the unvoxelized phantom.

The x-ray source was a point source located 30 cm from thecefthe phantom along its
central axis. The energy spectrum of the source was a sietLB8tkVp spectrum of a tungsten
target with 0.8 mm beryllium, 4 mm aluminum and 250 mm air fdteThe point source was
collimated onto the front surface of the phantom. The imdgagwas perpendicular to the
central axis of the phantom and located 30 cm behind its cefie image plane consisted of
512x 512 square pixels of side length 1 mm.

During the simulation, the number of Compton and Rayleigtitec events that a photon
underwent was tracked and when the photon was propagateslitoage plane, it was assigned
to one of the following four categories: primary (never sm@d), Compton (Compton
scattered once), Rayleigh (Rayleigh scattered once) aftiptaiscatter (scattered more than
once). Each simulation produced five different images ofdke energy fluence in each pixel
ofthe image plane normalized to the number of historiesopered. Fourimages corresponded
to the four different photon categories and the last imagethv@sum of all categories, referred
to as the total.

The EGSnrc simulations were performed with the user code(Ejppuneret al 2011,
which was specifically designed for x-ray imaging and scatelysis. Epp is based on
the EGSnrc C++ class library and thus uses RANMAR. Electransport in the underlying

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 10

EGSnrc code was completely disabled. The simulation kevhtle CUDA simulation was
run in single precision, but the initialization, i.e. cdlting media data, and the summing
kernel were run in double precision. The EGSnrc code wasraimgle and double precision.

The EGSnrc simulations were compiled with g++ and gfortnagar SUSE Linux 11 and
run on the same machine, which had 16 GB RAM and two Intel Xeaad3Core X5460
CPUs with a clock rate of 3.16 GHz and 12 MB L2 Cache. Howevely a single CPU
thread was used for the simulations. The CUDA implementatias compiled with Microsoft
Visual Studio 2008 under Microsoft Windows Vista using tHé@A Toolkit 3.1 and was run
on the same machine on an EVGA GeForce GTX 470 SuperClockiew dard. The GPU
had 14 multiprocessors with a total of 448 CUDA cores and 12®8)of global memory.
The clock rates of the core, shader and memory (effectiveg w25, 1250 and 3402 MHz,
respectively. The simulation kernel was launched with twacks per multiprocessor, 64
registers per thread, 512 threads per block and 32 768idrsatf the outer loop per kernel.
Due to the large number of registers used, only one blockddoeilactive on a multiprocessor
at any given time.

3.2.2. First experiment: speedupkour simulations with different numbers of voxélgoy
were run. Each simulation was split up ilfMg,.ch= 10 batches using different random number
seeds and each batch simulateiiii8tories. The total CPU/GPU tinfewas the time the CPU
or GPU spent in calculating histories. Note that the timeuneql for the initialization has no
influence on the speedup because it is not included in the GPUtime. It makes sense to
exclude the initialization time because it does not deperttie number of histories simulated.
For comparison, however, the initialization time was meagdseparately.

The efficiencye of a Monte Carlo simulation is (e.g. Bielajew and Rogé1393)

1
£E= == 1
o7 @)
wheresis the total statistical uncertainty aidis the total CPU/GPU time. From batbhwe
get the total energy fluencky,; in the pixel(i, j). The statistical uncertain®y®;; in the pixel

(i,]) is then given by

<q)%>ij B <¢b>i21'

A = Noatch—1 @
The total statistical uncertaingjis the average of the uncertainties in all pixels:
s= (A®;j). 3)
Finally, the speedup of the CUDA simulation over EGSnrc ésrtttio of the efficiencies:
€CUDA
speedup= ~SEGS - (4)

For the CUDA simulations, the average numbel of different simulation steps
performed in one iteration of the outer loop was measureduantify the degree of the
divergence. 1(d) gives a lower bound for the fraction of threads that werevaain average
during the whole simulation.

3.2.3. Second experiment: accuracho investigate whether the CUDA results were
statistically equivalent to the EGSnrc results and to giapbssible systematic deviations,
we repeated the simulation with the £a®xel phantom. The five different images (primary,
Compton, Rayleigh, multiple scatter and total) were coragaseparately. To see whether
the results of two simulations are statistically equivalenpaired Student'stest was used

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 11

to compare CUDA and EGSnrc in single and double precisiordithahally, a more detailed
analysis was carried out to investigate the differencesdsen CUDA and EGSnrc in double
precision. To put the results into perspective, the samigsisavas performed on two EGSnrc
runs in double precision with different random number seédissimulations were run with
Npatch= 20 and 186 histories per batch.
The test statistit of the paired Studentistest is given by
(—_ Dip (5)
std(Dij)/v/n

where

D)) = (@)~ (@) ©
is the difference of the fluencies in pix€l j), stdDjj) is the standard deviation of those
differences and is the number of pixels used in the analysis. Figtie two-sidedp-value
was calculated because the sign of the mean difference dichatter. Thep-value is the
probability that a test statistic as extreme or more extréérae the one measured is observed,
assuming that the results of the two simulations are dtalbt equivalent. If we use the
significance level 5%, we reject the null hypothesis thatrémilts of two simulations are
equivalent if thep-value is less than 0.05.

For the detailed analysis, we adopted the comparison melgsatibed by Kawrakow and
Fippel 200Q section 2.5.1). Ideally, the normalized differences gikrg
_ (Dij)

\/ (A0GUPAY 1 (AEes)?
should be normally distributed. The Kawrakow—Fippel metlagsumes that there are two
distinct systematic deviations. That is, a fractimnof all pixels has a systematic deviation
of A; standard deviations, a fraction of all pixels has a systematic deviation/sf standard
deviations and the remaining fraction-Tr; — a, of all pixels has no systematic deviation. The
four parameters1, a2, A1 andA, then produce a fit for the measured distribution ofthis.
We calculated the Cramér—von-Mises criteriofito quantify the total difference between the
measured distribution and the fit. An advantagedfwas that the data did not need to be
binned and its value was not influenced by a bin size. In oue,aa was only a relative
goodness-of-fit measure, with a smaller value indicatingtgebfit.

To avoid large errors caused by poor photon statisticsiagiat the image plane, only
pixels which satisfied the following criteria were consigl#in the analysis.

(i) The fluence(®y);; was nonzero in the CUDA and EGSnrc images and so the statistic
uncertaintyA®;; was also nonzero in both images.

(i) The statistical uncertainty was less than 50% of therfagg i.e A®;; / (Py)i; < 0.5, inthe
CUDA and EGSnrc images.

Xij (7)

4, Results

All quantities were rounded to 4 significant digits. In thiglghe following section, C stands
for CUDA and Ed/Es stands for EGSnrc in double/single preois

4.1. First experiment: speedup

Table2 shows the total CPU/GPU time of all batches, the averageliziétion time of one
batch and the average number of histories per second of yd&Bsfor different numbers of
voxels. Note in particular that the CPU/GPU time is the tofalll batches and the initialization

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 12

Table 2. The total CPU/GPU time of all batches, the average initiitzetime of one batch and
the average number of histories of one batch of CUDA (C), EG8ndouble (Ed) and single (Es)
precision for different numbers of voxels.

Tepu/apu (S) (Tinit) (S) (H/Tcpyepu) (571

U3¢ Ed Es c EdEs C Ed Es

64 2907 6195 5814 0.6408 0.1980 3641000 161400 172000
128 468.2 13410 12380 3.102 0.7800 2253000 74600 80770
192 6121 22660 21960 9.186 2.406 1657000 44140 45540
256 780.0 31600 30890 20.65 5625 1313000 31640 32370

Table 3. The speedups between CUDA (C), EGSnrc in double (Ed) andes{) precision,
the average numbéd) of different simulation steps performed in one iteration @& tuter loop
and the lower bound /d) for the fraction of threads that were active on average in BUar
different numbers of voxels.

143 CversusEd CversusEs Esversus Edd) 1/(d) (%)

64 22.58 21.16 1.067 2.240 4464
128 30.18 27.84 1.084 1.788 55.93
192 37.66 36.39 1.035 1579 63.35
256 4154 40.57 1.024 1.459 68.56

Table 4. The two-sidedp-values of the paired Studentsest between CUDA (C), EGSnrc in
double (Ed) and single (Es) precision for the different insage

Image C versus Ed C versus Es Ed versus Ed Es versus Ed
Primary 1086x 1027 5.408x1028 0.4237 0.9033

Compton 0.1136 0.4130 0.8737 0.4511
Rayleigh 0.2065 0.9898 0.1714 0.2057
Multiple 0.8259 0.9286 0.4232 0.7600

Total 2604x10°2% 8.295x 10725 0.3949 0.7012

time is the average for one batch, i.e. the amount of timedhatsimulation needs for the
initialization, independent of the number of histories.eThitialization times of Ed and Es
were the same.

Table3 gives the speedups between C, Ed and Es as defind}j thé average number of
different simulation steps performed in one iteration & tluter loop and the corresponding
fraction of threads that were active on average in CUDA.

4.2. Second experiment: accuracy

Table4 shows the two-sideg-values of the paired Student'sest between C, Ed and Es for
the different images. Tabka) shows the detailed comparison between C and Ed for the five
images. <xij> andAx;; are the mean and standard deviation of the normalized eliftas,

Xij, respectively;aq, Ay, ap andA; are the parameters obtained from the Kawrakow-Fippel
analysis andv? is the Cramér—von-Mises criterion. Tal#h) shows the same data for the
comparison between the two Ed runs.

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 13

Table 5. Detailed comparison of (a) C and Ed and (b) the two Ed runs. liefite images, the
mean and standard deviation of the measured normalized difesgthe four parameters obtained
from the Kawrakow—Fippel analysis and the Cramér—von-Misisrion «w? are given.

Image (%) (1073 Axj a1 (%) N as (%) Ay w? (1079)
(a) CUDA versus double precision EGSnrc

Primary —36.52 1.027 3.964 —-1.025 0.1252 3.282 3.780

Compton 4.774 1.028 0.8715 1.944 0.6004-2.026 0.8087

Rayleigh 7.985 1.022 0.8549 1.825 0.3400-2.240 0.1956

Multiple 1.175 1.028 0.7524 1.991 0.7327-1.884 0.8643

Total -1223 1.028 1.332 1591 0.3490 2568 1.111

(b) Double precision EGSnrc versus double precision EGSnrc

Primary —3.487 1.026 0.8260 —1.877 0.6076 1.978 0.8417
Compton —0.03935 1.029 0.8984 1.784 0.8587-1.870 0.1628
Rayleigh —3.194 1.025 0.9628 —-1.643 0.6636 1.902 0.1636
Multiple 2.367 1.025 0.7780 1.832 0.5939-2.001 0.7523
Total 0.4329 1.027 0.8455 1.828 0.8331-1.804 0.3553

Figures4(a) and (b) show the measured distribution of thé& and the fit obtained from
the analysis of the primary images of C and Ed along with thesSian. The other images
had similar or better agreement between the data and theditbetween the data and the
Gaussian. Figured(c) and (d) compare the measured differences between C andnidd
between the two Ed runs in the primary and total images. Theramages presented a very
similar picture with good agreement between C versus Ed a@ndEus Ed and also between
those and the Gaussian.

Finally, figure5(a) is the total CUDA result image, shown on a log scale to robdhe
visibility of structures inside the phantom. The dark ameaiad the bright square is the shadow
of the collimator and contains only scattered photons. ote tesultimage of Ed (not shown)
appeared identical except for statistical variations. uFégp(b) shows thex;’s of the total
image for C versus Ed. All other difference images, inclgdimose of Ed versus Ed, appeared
virtually identical without any discernible structure catferns. For increased contrast, the
range[—4,4] was chosen. Less than 0.04% of the pixels fell outside of#inige and they are
shown ast4.

5. Discussion

5.1. First experiment: speedup

CUDA had longer initialization times than EGSnrc, but thegrer still comparable. The
speedups of 20 to 40 times achieved by our CUDA implememtaticer Ed and Es are
comparable to the speedups obtained by Badal and Ba@808(Running EGSnrc in single
precision resulted only in a marginal speedup. We can seelylthat, as the number of
voxels increased, the average number of different sinariaieps performed in one iteration
of the outer loop decreased and thus more threads were antaxerage, resulting in a higher
speedup. This happened because, as the number of voxelased, their size decreased and a
transport step did not step across a voxel boundary, sodbtdn of transport steps increased,
thus decreasing the divergence.

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 14

0.4 Frrr [T T TR T T T 0.4 e TR T T

L] L Data o

[] [Fit]
5, 0.3 — — 5, 0.3 — Gaussian - ---- _
= - B = - 4
g L i 8 L i
3 L _ 3 L i
A L] A L]
202 — 202 —
3 L] 2 L]
< <
Nl = — Nal = -
e = 4 3 L i
01— — 01— —
0.0 o P I B S N N 0.0 o A R B B o

4 -3 -2 -1 0 1 2 3 4 4 -3 2 -1 0 1 2 3 4

Tij Tij
(a) Primary, C versus Ed. (b) Primary, C versus Ed.

0.4 e T T T 0.4 [T T T T T T T T

F v % Cvs.Ed o L ‘,/ . Cvs.Ed ¢

[." *Edvs.Ed 4+ r ; "Edvs.Ed +

= \ 4 + , \ E
o 0.3 — ! ¢ Gaussian ----- — 5 0.3 — IF '\Gaussian ***** —
= r N v bl = r i v B
g L ! 4 EE- , 4 1
s J \ A) \

L \ i - L . \ i
£ 02 ! ’, - Zo2+ ! * —
2L ! : 1 2 f :]
=0 : ’ I / \]
o L ! 1] o [¢ *]
01— . s — 01— N . —

L / \ i L ; \ i

L] | L 2 » |

L l*l \o | L .9/ \0‘ 4
O‘O’m‘A-ﬁ"mmmmmmmm\?*‘w J 0.0 lewmanto L L e

4 -3 2 -1 0 1 2 3 4 4 -3 -2 -1 0 1 2 3 4

Tij Tij
(c) Comparison, primary. (d) Comparison, total.

Figure 4. Measured distribution of the differences in the primary iméaebetween CUDA
(C) and EGSnrc in double precision (Ed) and (b) between tleeBd runs. Comparison of the
measured distributions of the differences between C and &thertwo Ed runs in (c) the primary
image and (d) the total image.

Itis important to note that the speedup was measured wigeoe$o a single CPU thread.
The computer that ran the EGSnrc simulation was part of ax.@huster consisting of many
nodes, each of which had one or two CPUs with up to four corggica@lly, an EGSnrc
simulation would be run in parallel by simply dividing thetiea workload among several
CPUs and/or CPU cores. Each CPU or CPU core would then rundapémdent simulation
with different random number seeds and the results of allitions would be combined at
the end. This kind of task parallelism has been exploited fong time (e.g. Kirkby and Delpy
(1997), but it is different from the data parallelism achieve@iur CUDA implementation by
processing instructions for many histories in parallelsfiow the benefit of our approach, the
simulation time of a single GPU using data parallelism is pared to the simulation time of a
single CPU thread not using any parallel processing.

5.2. Second Experiment: accuracy

Table4 shows that th@-values for Ed versus Ed and Es versus Ed are all much large0ti05;
thus there is no evidence to suggest that the two Ed runs anddEEd were not equivalent.

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 15

(a) Total CUDA image in log scale. (b) Totalx;j, C versus Ed.

Figure 5. (a) The total image of the CUDA simulation in a log scale. (b) Treemalized
differences;; in units of standard deviation between CUDA (C) and EGSnuoinble precision
(Ed) in the total image.

This means that running EGSnrc in single precision intreduto measurable errors. The
same goes for the scatter images (Compton, Rayleigh angfewdtatter) of C versus Ed and
C versus Es. Further, thevalues of the scatter images of C versus Es are higher thiad fo
versus Ed, indicating that our CUDA simulation is a bit clogeEs than Ed, which is to be
expected. However, in the primary and total images, we lglegject the null hypothesis that
C and Ed or Es are equivalent.

Table5 shows that the means of thg's were mostly of the order 1§ or smaller while
only two were of order 107. The means of the differences between the two Ed runs tended t
be smaller than those between C and Ed. The standard degiaidhex;;’s were about the
same in all cases and close to 1. Ma& were less than or close to 1%, indicating that only
very few pixels had systematic deviations, which were nydsts than or about 2 standard
deviations. Most values @b? were about the same. Generally, the fit seemed to be better for
the scatter images and worse for the primary and total imafjes values ofv? tended to be
higher for C versus Ed, indicating that the fit was slightlyrsefor those differences.

A closer look at the analysis parameters for Ed versus Ete(Eb)) reveals thatr; ~ o>
andA; ~ —A,; for all five images. This means that the differences were a®yguametrically
distributed around 0, but their spread was slightly highantthat of the normal distribution.
This can also be seen from the fact that the means were vesg o0 and the standard
deviations were slightly larger than 1. It was found thatdtendard deviations, and thus the
spread, decreased with increasing number of batches. Wigawwonclude that the two Ed
runs did produce statistically equivalent results for mlages and the slightly higher spread
of the differences arose from a small underestimation otatstical uncertaintq®;; due to
the relatively small sample sizBl{zich= 20).

The differences between C and Ed (tab(@)) in the scatter images presented a very
similar picture. The differences were approximately syrrine@and on the same order as for
Ed versus Ed, as was the goodness of the fit. The primary imageQ versus Ed showed the
largest deviation from a standard normal distribution, alihivas also reflected in the total

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 16

image. Almost 4% of the pixels had a negative systematicatievi of about 1 standard
deviations, while almost no pixels had a positive deviatidihis means that CUDA tended
to underestimate the energy fluence compared to Ed in theprirmage, which also led to
the relatively large negative mean difference. Since wesaeingp-values that are also very
small for C versus Es in the primary and total images, we ceatidbute these differences to
the fact that CUDA used single precision. So these systerdidtérences must be due to the
different RNG that was used in CUDA. Further investigaticod be necessary to determine
which of the two generators produced the ‘correct’ resits.in any case, even though there
are measurable systematic differences, these differameegry small. The average combined
statistical uncertainty in the primary image was only aldoéts of the average energy fluence,
so about 4% of the pixels had a systematic difference of less2% (11 x 1.7% = 1.87%),
which gives an overall systematic difference of less th@8% (4%x 2% = 0.08%).

The fit in figure4(a) seems to be quite good even though this one had the laaest
for w?. Furthermore, despite the largest systematic deviationhie image, the measured
distribution was still close to the Gaussian. As seen in ti@yais, the fit for Ed versus Ed
in the primary image (figuré(b)) is closer to the Gaussian and it fits the data also quite we
Figure4(c) shows that there are more negative differences betwesn €d than between Ed
and Ed, again indicating that C slightly underestimatedrB&tié primary image. For the total
image (figured(d)), the agreement is better.

The spatial distribution of the differences between C anthHuk total image (figurg(b))
appears completely random. There are no visible structarggite of the fact that there are
sharp discontinuities in the result image (figd@)). The largest systematic difference was
found in the primary image which corresponds to the brigaaaround the cylinder, but this
systematic difference is not visible in the difference imagjall, thus implying that it is much
smaller than the statistical uncertainty.

6. Conclusion

Our proposed CUDA implementation of EGSnrc achieves a sgeefl20 to 40 times over
the conventional CPU implementation of EGSnrc in singlearhde precision for phantoms
consisting of 64 to 256 voxels. This speedup is similar to what others (e.g. Bad&Batano
(2009) have found for x-ray Monte Carlo simulations. Multiple G&can be used to split up
the workload and thus further reduce the simulation time D&ldlso has the advantage that
it scales very well to newer hardware. Our implementatioeasily portable to newer and
faster video cards. Only a few simple parameters have tojostad to optimize our code for
a different GPU and take full advantage of its capabilities.

We have also found that running EGSnrc in single precisidp produces a very small
speedup compared to double precision and there are no rabsdifferences. In the scatter
images (Compton, Rayleigh and multiple scatter), our CUDAutation is equivalent to
EGSnrc in double precision. In the primary and total imagesfound a measurable overall
systematic difference of less than 0.08%, which cannot tibaited to the fact that CUDA
used single floating-point precision.

The idea of dividing the simulation of a history into steps @erforming the same steps
in parallel in different threads to avoid warp divergenca ba extended to the transport of
electrons. In that case, an additional mechanism is needeavie multiple particles on the
stack. While this will be more complex, a speedup over EGSancstill be expected. Even
without electron tracking, dose scoring can be accommddatestimating the dose from the
photon energy deposited in each voxel. Such a method maypeatceptable results in the
diagnostic energy range if the voxels are not too small.

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 17

Acknowledgements

This work was supported by funding from the CancerCare Méaitf-oundation. The authors
thank Dr Harry Ingleby for helpful discussions and feedbaickt Dr H C Wolfart for valuable
editorial comments.

References

Alerstam E, Svensson T and Andersson-Engels S 2008 Paraitgduting with graphics processing units for high-
speed Monte Carlo simulation of photon migratibrBiomed. Opt13 060504

Andreo P 1991 Monte Carlo techniques in medical radiatiorsjgsyhys. Med. Biol36 861-920

Badal A and Badano A 2009 Accelerating Monte Carlo simulaiofhphoton transport in a voxelized geometry
using a massively parallel graphics processing Metl. Phys36 4878-80

Bielajew A F and Rogers D W O 1993 Variance Reduction TechestjlRC Report PIRS-0396stitute for National
Measurement Standards, National Research Council, Ot@Gaveada
http://rcwww.kek. jp/research/egs/docs/pdf/nrc-pirs0396.pdf

Blythe D 2008 Rise of the Graphics ProcesBarc. IEEE96 761-78

Després P, Rinkel J, Hasegawa B H and Prevrhal S 2008 Streaeessors: a new platform for Monte Carlo
calculations]. Phys.: Conf. Sel02 012007

Gu X, Choi D, Men C, Pan H, Majumdar A and Jiang S B 2009 GPU-bakestfast dose calculation using a finite
size pencil beam modé&lhys. Med. Biol54 6287-97

Gulati K and Khatri S P 2009 Accelerating statistical stéitiing analysis using graphics processing uAissa and
South Pacific Design Automation Conf., ASP-DAC 20p260-5

Hissoiny S, Ozell B, Bouchard H and Després P 2011 GPUMCD:vA@®BU-oriented Monte Carlo dose calculation
platformMed. Phys38 754-64

Januszewskia M and Kostur M 2010 Accelerating numericati®oiwf stochastic differential equations with CUDA
Comput. Phys. Commutd1 183-8

Jia X, Gu X, Sempau J, Choi D, Majumdar A and Jiang S B 2010 Dewsdmp of a GPU-based Monte Carlo dose
calculation code for coupled electron-photon transpbits. Med. Biol55 3077-86

Kawrakow | and Fippel M 2000 Investigation of variance reihre techniques for Monte Carlo photon dose
calculation using XVMCPhys. Med. Biol45 2163-83

Kawrakow |, Mainegra-Hing E, Rogers D, Tessier F and Wale2010 The EGSnrc Code System: Monte Carlo
Simulation of Electron and Photon TranspbfiRC Report PIRS-70Ibnizing Radiation Standards, National
Research Council, Ottawa, Canada
http://irs.inms.nrc.ca/software/egsnrc-V4-2.3.1/documentation/pirs701/

Kawrakow |, Mainegra-Hing E, Tessier F and Walters B 2009 ESnrc C++ class librarflRC Report PIRS-898
(rev A)lonizing Radiation Standards, National Research Cou@tigwa, Canada
http://irs.inms.nrc.ca/software/egsnrc-V4-2.3.1/documentation/pirs898/

Kirkby D R and Delpy D T 1997 Parallel operation of Monte Caslmulations on a diverse network of computers
Phys. Med. Biol42 1203-8

L'Ecuyer P and Simard R 2007 TestU01: A C library for empiriegting of random number generat&@M Trans.
Math. Softw33 Article 22 / 1-40

Linz P 1970 Accurate floating-point summati@emmun. ACM.3 361-2

Lippuner J, Elbakri | A, Cui C and Ingleby H R 2011 Epp: A C++ B@Suser code for x-ray imaging and scattering
simulationsMed. Phys38 1705-8

LoW CY, Han T D, Rose J and Lilge L 2009 GPU-accelerated MoragddCsimulation for photodynamic therapy
treatment plannin@roc. SPIE 73738PIEp 737313

Matsumoto M and Nishimura T 1998 Mersenne Twister: A 623-dinoeradly equidistributed uniform pseudorandom
number generatokCM Trans. Modeling Comput. Sim&3-30

Matsumoto M and Nishimura T 2000 Dynamic creation of pseud@andumber generatorfgionte Carlo and
Quasi-Monte Carlo Methods 19%8pringer Berlin pp 56—69
http://www.math.sci.hiroshima-u.ac.jp/ “m-mat/MT/DC/dc.html

Men C, Gu X, Choi D, Majumdar A, Zheng Z, Mueller K and Jiang S B)2@PU-based ultrafast IMRT plan
optimizationPhys. Med. Biol54 6565—-73

NVIDIA 2010a NVIDIA CUDA C Best Practices Guide Version BIVIDIA Corporation
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/
NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf

NVIDIA 2010b NVIDIA CUDA C Programming Guide Version 3.NVIDIA Corporation
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/
NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

http://dx.doi.org/doi:10.1117/1.3041496
http://dx.doi.org/10.1088/0031-9155/36/7/001
http://dx.doi.org/10.1118/1.3231824
http://rcwww.kek.jp/research/egs/docs/pdf/nrc-pirs0396.pdf
http://dx.doi.org/10.1109/JPROC.2008.917718
http://dx.doi.org/10.1088/1742-6596/102/1/012007
http://dx.doi.org/10.1088/0031-9155/54/20/017
http://dx.doi.org/10.1109/ASPDAC.2009.4796490
http://dx.doi.org/10.1118/1.3539725
http://dx.doi.org/10.1016/j.cpc.2009.09.009
http://dx.doi.org/10.1088/0031-9155/55/11/006
http://dx.doi.org/10.1088/0031-9155/45/8/308
http://irs.inms.nrc.ca/software/egsnrc-V4-2.3.1/documentation/pirs701/
http://irs.inms.nrc.ca/software/egsnrc-V4-2.3.1/documentation/pirs898/
http://dx.doi.org/10.1088/0031-9155/42/6/016
http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.1145/362384.362498
http://dx.doi.org/10.1118/1.3555296
http://dx.doi.org/10.1117/12.831944
http://dx.doi.org/10.1145/272991.272995
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dc.html
http://dx.doi.org/10.1088/0031-9155/54/21/008
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

GPU implementation of EGSnrc’s Monte Carlo photon transport 18

Pratx G and Xing L 2011 GPU computing in medical physics: A nevided. Phys38 2685-97

Preis T, Virnau P, Paul W and Schneider J J 2009 GPU accelevétate Carlo simulation of the 2D and 3D Ising
modelJ. Comput. Phys228 4468-77

Raeside D E 1976 Monte Carlo principles and applicati®mgs. Med. Biol21 181-97

Rogers D W O 2006 Fifty years of Monte Carlo simulations for mabphysicshys. Med. Biol51 R287-301

Saito M 2010 A Variant of Mersenne Twister Suitable for GriggProcessors arXit005.4973vZcs.MS]

Salvat F, Fernandez-Varea J M and Sempau J FEISELOPE-2006: A Code System for Monte Carlo Simulation
of Electron and Photon TranspoBECD Nuclear Energy Agency Issy-les-Moulineaux, France
http://www.oecd-nea.org/science/pubs/2006/nea6222-penelope.pdf

Sempau J, Wilderman S J and Bielajew A F 2000 DPM, a fast, aeclMante Carlo code optimized for photon and
electron radiotherapy treatment planning dose calculafthys. Med. Biol45 2263-91

Shiraki A, Takada N, Niwa M, Ichihashi Y, Shimobaba T, Masudard Ito T 2009 Simplified electroholographic
color reconstruction system using graphics processingam liquid crystal display projectddpt. Express
17 16038-45

Verhaegen F and Seuntjens J 2003 Monte carlo modelling ofreatteadiotherapy photon bearRéys. Med. Biol.
48 R107-64

Woodcock E, Murphy T, Hemmings P and Longworth S 1965 Techsigquised in the gem code for monte carlo
neutronics calculations in reactors and other systems of leormgeometryProc. Conf. on Applications of
Computing Methods to Reactor Problems (Argonne Nationbbkatories Report ANL-705@) 557

J Lippuner and | A Elbakri Phys. Med. Bidb6 (2011) 7145-7162

http://dx.doi.org/10.1118/1.3578605
http://dx.doi.org/10.1016/j.jcp.2009.03.018
http://dx.doi.org/10.1088/0031-9155/21/2/001
http://dx.doi.org/10.1088/0031-9155/51/13/R17
http://arxiv.org/abs/1005.4973
http://www.oecd-nea.org/science/pubs/2006/nea6222-penelope.pdf
http://dx.doi.org/10.1088/0031-9155/45/8/315
http://dx.doi.org/10.1364/OE.17.016038
http://dx.doi.org/10.1088/0031-9155/48/21/R01

	Abstract
	1 Introduction
	2 Background
	2.1 The CUDA architecture
	2.2 Functionality of EGSnrc

	3 Methods
	3.1 Implementation with CUDA
	3.1.1 Parallelization of the simulation
	3.1.2 Simulation overview
	3.1.3 Simulation kernel
	3.1.4 Summing kernel
	3.1.5 Random number generator

	3.2 Computational experiments
	3.2.1 Simulation setup and hardware
	3.2.2 First experiment: speedup
	3.2.3 Second experiment: accuracy

	4 Results
	4.1 First experiment: speedup
	4.2 Second experiment: accuracy

	5 Discussion
	5.1 First experiment: speedup
	5.2 Second Experiment: accuracy

	6 Conclusion
	Acknowledgements
	References

