
Phys. Med. Biol.56 (2011) 7145–7162 doi:10.1088/0031-9155/56/22/010

A GPU implementation of EGSnrc’s Monte Carlo
photon transport for imaging applications

Jonas Lippuner1,2 and Idris A Elbakri1,3,4
1 Department of Physics and Astronomy, University of Manitoba,Winnipeg, Manitoba,
R3T 2N2, Canada
2 Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
3 Department of Radiology, University of Manitoba, Winnipeg,Manitoba, R3T 2N2, Canada
4 CancerCare Manitoba, Department of Medical Physics, 675 McDermot Ave, Winnipeg,
Manitoba, R3E 0V9, Canada

E-mail: jonas@lippuner.ca

Received 25 May 2011, in final form 25 August 2011
Published 25 October 2011
Online atstacks.iop.org/PMB/56/7145

Abstract
EGSnrc is a well-known Monte Carlo simulation package for coupled electron–
photon transport that is widely used in medical physics application. This
paper proposes a parallel implementation of the photon transport mechanism
of EGSnrc for graphics processing units (GPUs) using NVIDIA’s Compute
Unified Device Architecture (CUDA). The implementation is specifically
designed for imaging applications in the diagnostic energyrange and does
not model electrons. No approximations or simplifications of the original
EGSnrc code were made other than using single floating-pointprecision instead
of double precision and a different random number generator. To avoid
performance penalties due to the random nature of the Monte Carlo method,
the simulation was divided into smaller steps that could easily be performed
in a parallel fashion suitable for GPUs. Speedups of 20 to 40 times for 643 to
2563 voxels were observed while the accuracy of the simulation was preserved.
A detailed analysis of the differences between the CUDA simulation and the
original EGSnrc was conducted. The two simulations were found to produce
equivalent results for scattered photons and an overall systematic deviation of
less than 0.08% was observed for primary photons.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Monte Carlo simulations are widely used to simulate the effects of ionizing radiation in medical
physics applications, such as radiotherapy treatments andx-ray imaging (e.g. Raeside (1976),
Andreo (1991), Verhaegen and Seuntjens (2003), Rogers (2006)). Monte Carlo simulations
can produce highly accurate results, but often require longcomputation times. A well-known,

http://dx.doi.org/10.1088/0031-9155/56/22/010
mailto:jonas@lippuner.ca
http://stacks.iop.org/PMB/56/7145

GPU implementation of EGSnrc’s Monte Carlo photon transport 2

multi-purpose Monte Carlo simulation package is EGSnrc (Kawrakowet al 2010), which is
designed for coupled transport of electrons and photons through an arbitrary geometry in the
energy range of 1 keV to 10 GeV.

A relatively new approach to accelerating computationallyintensive simulations is the
use of graphics processing units (GPUs) instead of central processing units (CPUs). Over the
last few years, GPUs have evolved from specialized microprocessors for graphics rendering
to programmable, highly parallel, multi-core processors that can be used for general-purpose
computations (Blythe2008). Modern GPUs consist of hundreds of cores capable of executing
thousands of instances of a single program simultaneously with different input data. NVIDIA
developed the Compute Unified Device Architecture (CUDA) (NVIDIA 2010b), which is
a high-level GPU programming interface for C. With CUDA, onecan write programs that
execute on NVIDIA GPUs and take full advantage of the parallel architecture.

Parallel programming with GPUs, specifically using CUDA, has been successfully used
to accelerate codes and simulations in various fields of science by up to three orders of
magnitude (e.g. Shirakiet al (2009), Januszewskia and Kostur (2010)). Various Monte Carlo
simulations have seen significant speedups of one, two or three orders of magnitude when
implemented with CUDA (e.g. Preiset al (2009), Gulati and Khatri (2009), Alerstamet al
(2008)). GPU computing has also become popular in medical physics(Pratx and Xing2011).
For example, GPU implementations of a ray tracing algorithm(Despréset al 2008) and
radiotherapy treatment planning (Guet al 2009, Men et al 2009, Lo et al 2009) achieved
significant speedups.

Some work has been carried out in accelerating Monte Carlo simulations for coupled
electron–photon transport. Jiaet al (2010) implemented the dose planning method (DPM)
(Sempauet al 2000) with CUDA and achieved a speedup of 4.5 to 5.5 times. Hissoiny
et al (2011) developed a new GPU code for coupled electron–photon transport with emphasis
on dose calculation. They achieved a speedup of more than 900times over EGSnrc and
good agreement between their simulation results and EGSnrc’s. Badal and Badano (2009)
implemented the photon interaction models of PENELOPE 2006(Salvatet al 2006) and
achieved a speedup of up to 27 times for x-ray simulations.

In this paper, we present an implementation of the Monte Carlo photon transport
mechanism of EGSnrc for CUDA. The main goal of this work is to make the simulation
faster by implementing it for GPUs without changing the original method or introducing
any approximations. The only exceptions to this are that we use a different random number
generator (RNG) that is more suited for GPUs, and that we use single floating-point precision
instead of double precision, because current GPUs are optimized for single precision. The
code presented in this paper is specifically designed for imaging applications and only
simulates photons propagating through a voxelized volume.Dose scoring and electrons are
not implemented.

Note that there are many other techniques to improve the efficiency of EGSnrc and
reduce the simulation time. For example, Kawrakow and Fippel (2000) investigated numerous
variance reduction techniques and the Woodcock tracking algorithm (Woodcocket al 1965),
also known asδ -scattering, is capable of producing a significant speedup for imaging oriented
simulations such as this. However, such methods are not considered in this paper since our goal
is to achieve a speedup solely by using CUDA. Furthermore, any modification to the EGSnrc
code that would make it run faster can also be implemented in our CUDA version and would
thus make that run faster too.

This paper is organized as follows: section2 provides some technical background about
the CUDA architecture and the functionality of EGSnrc. Section 3 gives a detailed description
of our implementation with CUDA and the experiments that were performed to measure the

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 3

Table 1. Important terms related to CUDA.

Kernel Function that is executed on the GPU
Thread One instance of a kernel executing on the GPU
Warp Group of 32 threads executing concurrently on a multiprocessor
Block Larger group of threads that can communicate via shared memory
Global memory Largest but slowest memory on the GPU that all threadscan access
Registers Fast but limited private memory of one thread (32 bits per register)

speedup and accuracy of our code. The results of the experiments are presented in section4
and discussed in section5.

2. Background

2.1. The CUDA architecture

Table1 shows some of the most important terms related to CUDA used inthis paper. When
programming with CUDA, the main program is executed on the CPU and only certain
functions, calledkernels, are executed on the GPU. When a kernel is executed, thousands
of threadsare created on the GPU and each thread executes one instance of the kernel
simultaneously with other threads. Threads are grouped into blocksand all threads within
the same block can communicate with each other through shared memory (NVIDIA 2010b,
chapter 2). Furthermore, all threads can access the sameglobal memoryspace, which is the
largest memory space (several gigabytes on modern cards), but also the slowest. Each thread
has a set of privateregisterswhich are used to store intermediate results. One register holds 32
bits, e.g. one float. Accessing registers is fast, but the number of available registers is limited
(NVIDIA 2010a, section 3.2).

The GPU itself consists of several multiprocessors and multiple thread blocks can be active
at the same time on a single multiprocessor. Each multiprocessor always executes groups of 32
threads, called awarp, in parallel. The multiprocessors switch between different active warps
to hide the memory latencies associated with reading and writing data from and to memory.
While at any given time only instructions for 32 threads are actually executed in parallel on
each multiprocessor, there are hundreds of active warps permultiprocessor that are running
simultaneously (NVIDIA2010b, chapter 4).

The instructions for one warp are executed in a single instruction multiple data (SIMD)
fashion. Ideally, all threads in the warp perform the same calculation on different data. Full
efficiency is achieved when all threads share the same execution path. If the execution paths
of some threads diverge because of data-dependent conditions, the different branches will be
executed serially, which can drastically decrease the performance. It is therefore imperative
that the threads in a warp diverge as little as possible. Thisonly applies to the threads in
the same warp, because different warps execute independently in any case (NVIDIA2010a,
chapter 6).

2.2. Functionality of EGSnrc

EGSnrc uses random inputs following empirical or theoretical distributions to simulate the
propagation of one particle (photon, electron or positron)through the simulation geometry.
This is called ahistory, and many histories are simulated to obtain the final simulation result.
A history is started by determining the initial properties of the particle and then calling the

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 4

subroutineSHOWER. During the simulation, secondary particles may be created. Thestackis the
list of all particles active in the history and contains all properties of the particles, e.g. energy,
position, direction, etc.SHOWER transports all particles on the stack through the simulation
geometry until all are discarded because they leave the simulation geometry or their energy
falls below a cutoff.SHOWER calls the subroutinesPHOTON andELECTR, which handle photon
and electron/positron transport, respectively. These twosubroutines call other subroutines to
simulate different interactions. They also callHOWFAR andHOWNEAR, which are supplied by the
user to specify the simulation geometry; this is called theuser code. The subroutineAUSGAB
is called before and after different events and can be used inthe user code for scoring various
quantities (Kawrakowet al2010, section 3.2).

The EGSnrc core and many of its most widely used user codes arewritten in Mortran,
which is a macro language that generates Fortran code. The EGSnrc C++ class library
(Kawrakowet al 2009) provides a C++ interface for EGSnrc and allows one to write user
codes in C++ without having to write a single line of Mortran or Fortran. However, such C++
user code still uses the Mortran/Fortran core of EGSnrc thatimplements the actual Monte
Carlo simulation and the physics model.

3. Methods

3.1. Implementation with CUDA

In this work, we concentrate on the photon transport model. Our implementation is specific to
imaging a voxelized volume onto an image plane; hence we restrict ourselves to the transport
of photons only and completely ignore electrons.

3.1.1. Parallelization of the simulation.Parallelizing the simulation is not as simple as
running multiple histories in parallel since the individual histories diverge very quickly. If
each thread runs one history, the warps will probably diverge so strongly that the CUDA
implementation may be slower than the original EGSnrc. To reduce the divergence, we divide
the simulation of one history into the following steps.

• Create new photon:create a new photon and start a history; this is equivalent toSHOWER.

• Transport photon one step:transport a photon one step through the geometry, determine
if an interaction takes place and, if so, which one. This is equivalent toPHOTO and
includesHOWFAR for the geometry specifications.HOWNEAR is not needed, because it is
only used for electron transport. Since only voxelized volumes are supported, theHOWFAR
implementation of theEGS_XYZGeometry class from the EGSnrc C++ class library is
used.

• Interactions: Rayleigh, Compton, photoelectric and pair production interactions are
modeled. The Compton interaction only changes the energy and direction of the photon
and does not create an electron. The photoelectric and pair production interactions simply
destroy the photon without creating other particles.

• Propagate to image plane:propagate a photon that has left the simulation geometry to
the image plane and score its energy in the appropriate pixel.

The CUDA code is written entirely in C. The code pieces of the individual simulation steps
were extracted from the original EGSnrc Mortran code and rewritten in C. No changes to the
logic of the EGSnrc code were made. The only difference between the original code and ours
was that the latter used single floating-point precision instead of double precision and that in

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 5

Begin

Create new photon,
i.e. start new history

Transport photon one step

Compton Rayleigh Propagate to image plane Photoelectric Pair production

Requested number of
histories reached?

End

Yes

No

No interaction

Figure 1. Flowchart showing how a history is simulated, what the possible simulation steps are
and how they relate to one other.

some cases the flow was changed to make it more suitable for GPUs. Our code still performed
the same calculations in the same manner, so the underlying physics model was not changed.

Note that we did not implement a step equivalent toAUSGAB. Instead, we integrated the
functionality ofAUSGAB into the other parts, e.g. counting scattering events in thefunctions that
model Rayleigh and Compton interactions, or using a specificfunction for scoring a particular
quantity, like the propagation step.

The calculations for the individual simulation steps are mostly independent of the current
location, direction and energy of the photon. So, there is almost no divergence between
histories in the same simulation step. But the order of the steps in a particular history is
completely different from the other histories. Hence, if two threads run different histories,
they still diverge, but the divergence is easier to handle. The flowchart in figure1 shows how
a history is simulated, what the possible simulation steps are and how they relate to one other.
A history is complete when the photon leaves the simulation geometry and is propagated to
the image plane, or when a photoelectric or pair production interaction occurs which simply
destroys the photon. A new history is immediately started ifthe requested number of histories
has not been reached.

3.1.2. Simulation overview.The main simulation program executes on the CPU and first
initializes the media data, simulation geometry and other simulation parameters. The data
required for the simulation are then copied to the GPU and thesimulation of the histories is
performed on the GPU by repeatedly executing the simulationkernel followed by the summing
kernel until the requested number of histories is reached.

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 6

Begin

Read current status of the

stack from global memory

Maximum number of

iterations performed?

Go to first possible simulation step

Go to next possible

simulation step

Some thread

needs to perform

this step?

This thread

needs to perform

this step?

Perform step

All threads

performed

a step?

Was this the

last possible step?

No thread performed a step and the

requested number of histories was reached?

Write current status of the

stack to global memory

End

No

Yes

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

inner loop

outer loop

Figure 2. Flowchart of the simulation kernel executing on the GPU.

On the GPU, hundreds of histories are calculated in parallel. Each thread runs one
history until it is finished and then starts a new one if more histories need to be simulated.
In the simulation kernel, each thread performs thousands ofsimulation steps, thus simulating
multiple histories. Once the simulation kernel is finished,the summing kernel is executed,
which sums up the results of the simulation kernel. The simulation kernel is then executed
again, followed by the summing kernel, until the simulationis finished. The following sections
describe the two kernels in more detail.

3.1.3. Simulation kernel.Each thread has a private stack that contains exactly one photon.
Figure2 shows a flowchart of the simulation kernel executing on the GPU. When the kernel is
started, each thread reads the current status of its stack from global memory and then keeps the
stack in registers. Then the threads in the same warp step together through two nested loops.

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 7

In each iteration of the outer loop, each thread performs at least one simulation step. To
ensure that no two threads in the same warp perform differentsimulation steps at the same time,
the threads go together through the inner loop. Each iteration of the inner loop corresponds
to one possible simulation step, i.e. transport step, Compton interaction, Rayleigh interaction,
etc. Those threads that need to perform the current simulation step perform it while the others
wait. Once each thread has performed at least one step or the last possible simulation step is
reached, the inner loop is finished and the next iteration of the outer loop is started.

The outer loop is complete if a determined number of iterations have been performed, or
no thread performed a simulation step and the requested number of histories has been reached;
hence, no active particles are left and no new particles willbe created. Once the outer loop is
exited, the threads write the current status of their stack back to global memory and then the
summing kernel is executed.

This scheme may seem very complicated and one might think that a simpleswitch
statement would suffice since the GPU would automatically serialize the different branches
of theswitch statement in one warp. However, this is problematic becausethe current RNG
(see section3.1.5) requires all threads in the warp for calculating random numbers. With a
switch statement, the threads that are not performing the current simulation step would be
unavailable for calculating random numbers since they would be in a different section of the
code. But with our looping approach, these inactive threadsare still going through the code of
the current step with the other threads and are thus available for calculating random numbers
when needed. The inactive threads are disabled in the sense that they do not perform any
memory accesses or calculations (except for calculating random numbers).

A simple measure for the degree of the divergence in the simulation is the average number
of different simulation steps performed in the inner loop. If d different simulation steps were
performed in one iteration of the outer loop, then each thread performed at least one simulation
step, but in total,d different simulation steps were performed. So 1/d is a lower bound for the
fraction of threads that were active on average during this iteration of the outer loop. It is only a
lower bound because it is possible that some threads performed more than one simulation step.
The order in which different steps are performed was chosen such that the most frequent steps
are performed first, namely transport step, new particle, propagation to image plane, Compton
interaction, photoelectric effect, Rayleigh interactionand pair production. So if in one history
a transport step is performed and it is determined that a Compton interaction will occur next
for this photon, then the Compton interaction is also performed when the inner loop reaches
that simulation step.

3.1.4. Summing kernel.The scored quantity in our simulation is the energy of photons
arriving at a pixelated image plane. Each element of the scoring array corresponds to one
pixel of the image plane and holds the total amount of energy reaching that pixel. Once a
photon leaves the simulation geometry, it is propagated to the image plane in a straight line
determined by its exit location and direction, and its energy is added to the total energy already
deposited in the pixel where it hits the plane.

Summing up a large number of values using floating-point arithmetic is prone to
compounded rounding errors. One technique to reduce these errors is to first sum up fewer
values and then add the subtotals together (Linz1970). In order to do this, each thread block
has a temporary scoring array that is initialized to zero every time the simulation kernel is
launched. During the execution of the simulation kernel, the threads accumulate their results
(in single precision) in the temporary scoring array of their block. After the simulation kernel
is finished, the summing kernel adds up the temporary scoringarrays and accumulates those

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 8

subtotals in one total scoring array; this addition is done in double precision to further reduce
rounding errors.

The temporary and total scoring arrays are stored in global memory. During the
accumulation of individual energies into the temporary scoring arrays in the simulation kernel,
it could happen that two threads need to add the energy of a photon into the same pixel. To
avoid data hazards, the threads add the energies of their photons to the temporary scoring
array using an atomic function, which ensures that the read,modify and write operations are
completed without interference from any other threads.

3.1.5. Random number generator.Currently, the only RNG implemented in the EGSnrc C++
class library, which was used for the EGSnrc simulations, isRANMAR. It calculates random
numbers serially and is thus not well suited for GPUs. On the one hand, if each thread used
one instance of RANMAR with a different initial seed, too much shared memory would be
required to store the states. On the other hand, if the threads of one warp shared one instance of
RANMAR, then only one thread would be used to calculate all the random numbers, because
this is done in a serial way, and the remaining 31 threads would be idle. Since many random
numbers are used, this would result in a serious performancepenalty.

For this reason, our code uses a different RNG, namely a variant of the Mersenne Twister
(Matsumoto and Nishimura1998) specifically designed for GPUs called Mersenne Twister
for Graphics Processors (MTGP) (Saito2010). The Mersenne Twister is a very widely used
RNG that passes the diehard tests (Matsumoto and Nishimura1998) and almost all of the more
stringent TestU01 tests (L’Ecuyer and Simard2007). The Mersenne prime exponent 3217 is
used because it produces a large period (23217−1≈ 10968) while only requiring 404 bytes to
store its current state.

The main advantage of MTGP is that the random numbers are calculated in parallel. Each
warp has its own Mersenne Twister and all the threads in the warp are used to calculate the
random numbers in parallel. There are 101 random numbers in one status array and 32 threads
in a warp. Hence, each thread can use three random numbers andthen the status array has to be
updated; the remaining five random numbers are not used. Furthermore, since all threads are
required to update the status array, when some threads in thewarp use a random number, all
other threads also have to advance their counter, but without actually using that random number.

The author of MTGP also developed a program to generate various parameter sets for
the MTGP, which was used to generate different parameter sets for each warp. All warps get
the same initial seed, but since they all have different parameters, they will produce highly
independent sequences (Matsumoto and Nishimura2000).

Since the RNG in our CUDA implementation is different from the one used in EGSnrc,
our simulation will not produce identical results. However, the results should be statistically
equivalent to the EGSnrc results, i.e. the difference between the CUDA and EGSnrc
simulations should be less than the combined statistical uncertainty. Even if we used
RANMAR in our CUDA implementation, we would still not get thesame results because our
CUDA code is structured very differently. In EGSnrc one history is simulated after another,
while in CUDA many histories are simulated in parallel. Therefore, even if we had the same
sequence of random numbers, these numbers would be consumedin a very different way so
that each CUDA history would effectively use a different sequence of random numbers than
the EGSnrc histories.

3.2. Computational experiments

Two computational experiments comparing our proposed CUDAimplementation to EGSnrc
were conducted. The first experiment measured the speedup ofthe CUDA implementation

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 9

Air cube

Water cylinder

Adipose cylinder

Aluminium rods

Bone cylinder

Teflon spheres

Figure 3. Frontal view of the unvoxelized phantom. Different voxelizations of this phantom were
used in the CUDA and EGSnrc simulations.

versus EGSnrc for various numbers of voxels, and the second experiment measured the
accuracy of the CUDA results compared to the EGSnrc results.

3.2.1. Simulation setup and hardware.The phantom used in both experiments was a water
cylinder with 12 cm diameter and height embedded in an air cube with a side length of 12.8 cm.
Two smaller cylinders (3 cm diameter, 10 cm high) consistingof bone and adipose tissue, as
well as two teflon spheres with 1 cm diameter and various rectangular aluminum rods with
thicknesses ranging from 1 mm to 4 mm, were placed inside the water cylinder. Different
materials were used to test the agreement between the CUDA code and EGSnrc for weakly
and strongly attenuating media. The phantom was voxelized to cubic voxels with 64, 128, 192
and 256 voxels in each dimension for the first experiment and 128 for the second. Figure3
shows the unvoxelized phantom.

The x-ray source was a point source located 30 cm from the center of the phantom along its
central axis. The energy spectrum of the source was a simulated 80 kVp spectrum of a tungsten
target with 0.8 mm beryllium, 4 mm aluminum and 250 mm air filters. The point source was
collimated onto the front surface of the phantom. The image plane was perpendicular to the
central axis of the phantom and located 30 cm behind its center. The image plane consisted of
512×512 square pixels of side length 1 mm.

During the simulation, the number of Compton and Rayleigh scatter events that a photon
underwent was tracked and when the photon was propagated to the image plane, it was assigned
to one of the following four categories: primary (never scattered), Compton (Compton
scattered once), Rayleigh (Rayleigh scattered once) and multiple scatter (scattered more than
once). Each simulation produced five different images of thetotal energy fluence in each pixel
of the image plane normalized to the number of histories performed. Four images corresponded
to the four different photon categories and the last image was the sum of all categories, referred
to as the total.

The EGSnrc simulations were performed with the user code Epp(Lippuneret al 2011),
which was specifically designed for x-ray imaging and scatter analysis. Epp is based on
the EGSnrc C++ class library and thus uses RANMAR. Electron transport in the underlying

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 10

EGSnrc code was completely disabled. The simulation kernelof the CUDA simulation was
run in single precision, but the initialization, i.e. calculating media data, and the summing
kernel were run in double precision. The EGSnrc code was run in single and double precision.

The EGSnrc simulations were compiled with g++ and gfortran under SUSE Linux 11 and
run on the same machine, which had 16 GB RAM and two Intel Xeon Quad-Core X5460
CPUs with a clock rate of 3.16 GHz and 12 MB L2 Cache. However, only a single CPU
thread was used for the simulations. The CUDA implementation was compiled with Microsoft
Visual Studio 2008 under Microsoft Windows Vista using the CUDA Toolkit 3.1 and was run
on the same machine on an EVGA GeForce GTX 470 SuperClocked video card. The GPU
had 14 multiprocessors with a total of 448 CUDA cores and 1280MB of global memory.
The clock rates of the core, shader and memory (effective) were 625, 1250 and 3402 MHz,
respectively. The simulation kernel was launched with two blocks per multiprocessor, 64
registers per thread, 512 threads per block and 32 768 iterations of the outer loop per kernel.
Due to the large number of registers used, only one block could be active on a multiprocessor
at any given time.

3.2.2. First experiment: speedup.Four simulations with different numbers of voxelsNvox

were run. Each simulation was split up intoNbatch= 10 batches using different random number
seeds and each batch simulated 108 histories. The total CPU/GPU timeT was the time the CPU
or GPU spent in calculating histories. Note that the time required for the initialization has no
influence on the speedup because it is not included in the CPU/GPU time. It makes sense to
exclude the initialization time because it does not depend on the number of histories simulated.
For comparison, however, the initialization time was measured separately.

The efficiencyε of a Monte Carlo simulation is (e.g. Bielajew and Rogers (1993))

ε =
1

s2T
, (1)

wheres is the total statistical uncertainty andT is the total CPU/GPU time. From batchb, we
get the total energy fluenceΦbi j in the pixel(i, j). The statistical uncertainty∆Φi j in the pixel
(i, j) is then given by

∆Φi j =

√

〈

Φ2
b

〉

i j −〈Φb〉2
i j

Nbatch−1
. (2)

The total statistical uncertaintys is the average of the uncertainties in all pixels:

s= 〈∆Φi j 〉. (3)

Finally, the speedup of the CUDA simulation over EGSnrc is the ratio of the efficiencies:

speedup=
εCUDA

εEGS . (4)

For the CUDA simulations, the average number〈d〉 of different simulation steps
performed in one iteration of the outer loop was measured to quantify the degree of the
divergence. 1/〈d〉 gives a lower bound for the fraction of threads that were active on average
during the whole simulation.

3.2.3. Second experiment: accuracy.To investigate whether the CUDA results were
statistically equivalent to the EGSnrc results and to quantify possible systematic deviations,
we repeated the simulation with the 1283 voxel phantom. The five different images (primary,
Compton, Rayleigh, multiple scatter and total) were compared separately. To see whether
the results of two simulations are statistically equivalent, a paired Student’st-test was used

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 11

to compare CUDA and EGSnrc in single and double precision. Additionally, a more detailed
analysis was carried out to investigate the differences between CUDA and EGSnrc in double
precision. To put the results into perspective, the same analysis was performed on two EGSnrc
runs in double precision with different random number seeds. All simulations were run with
Nbatch= 20 and 108 histories per batch.

The test statistict of the paired Student’st-test is given by

t =
〈Di j 〉

std(Di j)/
√

n
(5)

where

Di j = 〈Φb〉CUDA
i j −〈Φb〉EGS

i j (6)

is the difference of the fluencies in pixel(i, j), std(Di j) is the standard deviation of those
differences andn is the number of pixels used in the analysis. Fromt, the two-sidedp-value
was calculated because the sign of the mean difference did not matter. Thep-value is the
probability that a test statistic as extreme or more extremethan the one measured is observed,
assuming that the results of the two simulations are statistically equivalent. If we use the
significance level 5%, we reject the null hypothesis that theresults of two simulations are
equivalent if thep-value is less than 0.05.

For the detailed analysis, we adopted the comparison methoddescribed by Kawrakow and
Fippel (2000, section 2.5.1). Ideally, the normalized differences given by

xi j =
〈Di j 〉

√

(

∆ΦCUDA
i j

)2
+
(

∆ΦEGS
i j

)2
(7)

should be normally distributed. The Kawrakow–Fippel method assumes that there are two
distinct systematic deviations. That is, a fractionα1 of all pixels has a systematic deviation
of ∆1 standard deviations, a fractionα2 of all pixels has a systematic deviation of∆2 standard
deviations and the remaining fraction 1−α1−α2 of all pixels has no systematic deviation. The
four parametersα1, α2, ∆1 and∆2 then produce a fit for the measured distribution of thexi j ’s.
We calculated the Cramér–von-Mises criterionω2 to quantify the total difference between the
measured distribution and the fit. An advantage ofω2 was that the data did not need to be
binned and its value was not influenced by a bin size. In our case, ω2 was only a relative
goodness-of-fit measure, with a smaller value indicating a better fit.

To avoid large errors caused by poor photon statistics arriving at the image plane, only
pixels which satisfied the following criteria were considered in the analysis.

(i) The fluence〈Φb〉i j was nonzero in the CUDA and EGSnrc images and so the statistical
uncertainty∆Φi j was also nonzero in both images.

(ii) The statistical uncertainty was less than 50% of the fluence, i.e.∆Φi j /〈Φb〉i j < 0.5, in the
CUDA and EGSnrc images.

4. Results

All quantities were rounded to 4 significant digits. In this and the following section, C stands
for CUDA and Ed/Es stands for EGSnrc in double/single precision.

4.1. First experiment: speedup

Table2 shows the total CPU/GPU time of all batches, the average initialization time of one
batch and the average number of histories per second of C, Ed and Es for different numbers of
voxels. Note in particular that the CPU/GPU time is the totalof all batches and the initialization

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 12

Table 2. The total CPU/GPU time of all batches, the average initialization time of one batch and
the average number of histories of one batch of CUDA (C), EGSnrc in double (Ed) and single (Es)
precision for different numbers of voxels.

TCPU/GPU (s) 〈Tinit〉 (s) 〈H/TCPU/GPU〉 (s−1)

N1/3
vox C Ed Es C Ed/Es C Ed Es

64 290.7 6 195 5 814 0.6408 0.1980 3 641 000 161 400 172 000
128 468.2 13 410 12 380 3.102 0.7800 2 253 000 74 600 80 770
192 612.1 22 660 21 960 9.186 2.406 1 657 000 44 140 45 540
256 780.0 31 600 30 890 20.65 5.625 1 313 000 31 640 32 370

Table 3. The speedups between CUDA (C), EGSnrc in double (Ed) and single (Es) precision,
the average number〈d〉 of different simulation steps performed in one iteration of the outer loop
and the lower bound 1/〈d〉 for the fraction of threads that were active on average in CUDA for
different numbers of voxels.

N1/3
vox C versus Ed C versus Es Es versus Ed〈d〉 1/〈d〉 (%)

64 22.58 21.16 1.067 2.240 44.64
128 30.18 27.84 1.084 1.788 55.93
192 37.66 36.39 1.035 1.579 63.35
256 41.54 40.57 1.024 1.459 68.56

Table 4. The two-sidedp-values of the paired Student’st-test between CUDA (C), EGSnrc in
double (Ed) and single (Es) precision for the different images.

Image C versus Ed C versus Es Ed versus Ed Es versus Ed

Primary 1.086×10−27 5.408×10−28 0.4237 0.9033
Compton 0.1136 0.4130 0.8737 0.4511
Rayleigh 0.2065 0.9898 0.1714 0.2057
Multiple 0.8259 0.9286 0.4232 0.7600
Total 2.604×10−23 8.295×10−25 0.3949 0.7012

time is the average for one batch, i.e. the amount of time thatone simulation needs for the
initialization, independent of the number of histories. The initialization times of Ed and Es
were the same.

Table3 gives the speedups between C, Ed and Es as defined in (4), the average number of
different simulation steps performed in one iteration of the outer loop and the corresponding
fraction of threads that were active on average in CUDA.

4.2. Second experiment: accuracy

Table4 shows the two-sidedp-values of the paired Student’st-test between C, Ed and Es for
the different images. Table5(a) shows the detailed comparison between C and Ed for the five
images.

〈

xi j
〉

and∆xi j are the mean and standard deviation of the normalized differences,
xi j , respectively;α1, ∆1, α2 and∆2 are the parameters obtained from the Kawrakow–Fippel
analysis andω2 is the Cramér–von-Mises criterion. Table5(b) shows the same data for the
comparison between the two Ed runs.

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 13

Table 5. Detailed comparison of (a) C and Ed and (b) the two Ed runs. For the five images, the
mean and standard deviation of the measured normalized differences, the four parameters obtained
from the Kawrakow–Fippel analysis and the Cramér–von-Misescriterionω2 are given.

Image
〈

xi j
〉

(10−3) ∆xi j α1 (%) ∆1 α2 (%) ∆2 ω2 (10−6)

(a) CUDA versus double precision EGSnrc

Primary −36.52 1.027 3.964 −1.025 0.1252 3.282 3.780
Compton 4.774 1.028 0.8715 1.944 0.6004−2.026 0.8087
Rayleigh 7.985 1.022 0.8549 1.825 0.3400−2.240 0.1956
Multiple 1.175 1.028 0.7524 1.991 0.7327−1.884 0.8643
Total −12.23 1.028 1.332 −1.591 0.3490 2.568 1.111

(b) Double precision EGSnrc versus double precision EGSnrc

Primary −3.487 1.026 0.8260 −1.877 0.6076 1.978 0.8417
Compton −0.03935 1.029 0.8984 1.784 0.8587−1.870 0.1628
Rayleigh −3.194 1.025 0.9628 −1.643 0.6636 1.902 0.1636
Multiple 2.367 1.025 0.7780 1.832 0.5939−2.001 0.7523
Total 0.4329 1.027 0.8455 1.828 0.8331−1.804 0.3553

Figures4(a) and (b) show the measured distribution of thexi j ’s and the fit obtained from
the analysis of the primary images of C and Ed along with the Gaussian. The other images
had similar or better agreement between the data and the fit, and between the data and the
Gaussian. Figures4(c) and (d) compare the measured differences between C and Ed, and
between the two Ed runs in the primary and total images. The other images presented a very
similar picture with good agreement between C versus Ed and Ed versus Ed and also between
those and the Gaussian.

Finally, figure5(a) is the total CUDA result image, shown on a log scale to enhance the
visibility of structures inside the phantom. The dark area around the bright square is the shadow
of the collimator and contains only scattered photons. The total result image of Ed (not shown)
appeared identical except for statistical variations. Figure 5(b) shows thexi j ’s of the total
image for C versus Ed. All other difference images, including those of Ed versus Ed, appeared
virtually identical without any discernible structure or patterns. For increased contrast, the
range[−4,4] was chosen. Less than 0.04% of the pixels fell outside of thisrange and they are
shown as±4.

5. Discussion

5.1. First experiment: speedup

CUDA had longer initialization times than EGSnrc, but they were still comparable. The
speedups of 20 to 40 times achieved by our CUDA implementation over Ed and Es are
comparable to the speedups obtained by Badal and Badano (2009). Running EGSnrc in single
precision resulted only in a marginal speedup. We can see clearly that, as the number of
voxels increased, the average number of different simulation steps performed in one iteration
of the outer loop decreased and thus more threads were activeon average, resulting in a higher
speedup. This happened because, as the number of voxels increased, their size decreased and a
transport step did not step across a voxel boundary, so the fraction of transport steps increased,
thus decreasing the divergence.

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 14

0.0

0.1

0.2

0.3

0.4

–4 –3 –2 –1 0 1 2 3 4

P
ro

b
a
b
il
it
y

D
en

si
ty

xij

Data

b b b b b b b
b
b
b

b

b

b

b

b

b

b

b

b
b
b
b

b

b

b

b

b

b

b

b

b
b
b
b b b b b b b

b

Fit

Gaussian

(a) Primary, C versus Ed.

0.0

0.1

0.2

0.3

0.4

–4 –3 –2 –1 0 1 2 3 4

P
ro

b
a
b
il
it
y

D
en

si
ty

xij

Data

b b b b b b b
b
b
b

b

b

b

b

b

b

b

b
b

b b
b

b

b

b

b

b

b

b

b

b
b
b
b b b b b b b

b

Fit

Gaussian

(b) Primary, C versus Ed.

0.0

0.1

0.2

0.3

0.4

–4 –3 –2 –1 0 1 2 3 4

P
ro

b
a
b
il
it
y

D
en

si
ty

xij

C vs. Ed

b b b b b b b
b
b
b

b

b

b

b

b

b

b

b

b
b
b
b

b

b

b

b

b

b

b

b

b
b
b
b b b b b b b

b

Ed vs. Ed

u u u u u u u
u
u
u

u

u

u

u

u

u

u

u
u

u u
u

u

u

u

u

u

u

u

u

u
u
u
u u u u u u u

u

Gaussian

(c) Comparison, primary.

0.0

0.1

0.2

0.3

0.4

–4 –3 –2 –1 0 1 2 3 4

P
ro

b
a
b
il
it
y

D
en

si
ty

xij

C vs. Ed

b b b b b b b b
b
b

b

b

b

b

b

b

b

b

b
b b

b

b

b

b

b

b

b

b

b

b
b
b b b b b b b b

b

Ed vs. Ed

u u u u u u u u
u
u

u

u

u

u

u

u

u

u

u
u u

u

u

u

u

u

u

u

u

u

u
u
u
u u u u u u u

u

Gaussian

(d) Comparison, total.

Figure 4. Measured distribution of the differences in the primary image(a) between CUDA
(C) and EGSnrc in double precision (Ed) and (b) between the two Ed runs. Comparison of the
measured distributions of the differences between C and Ed and the two Ed runs in (c) the primary
image and (d) the total image.

It is important to note that the speedup was measured with respect to a single CPU thread.
The computer that ran the EGSnrc simulation was part of a Linux cluster consisting of many
nodes, each of which had one or two CPUs with up to four cores. Typically, an EGSnrc
simulation would be run in parallel by simply dividing the entire workload among several
CPUs and/or CPU cores. Each CPU or CPU core would then run an independent simulation
with different random number seeds and the results of all simulations would be combined at
the end. This kind of task parallelism has been exploited fora long time (e.g. Kirkby and Delpy
(1997)), but it is different from the data parallelism achieved inour CUDA implementation by
processing instructions for many histories in parallel. Toshow the benefit of our approach, the
simulation time of a single GPU using data parallelism is compared to the simulation time of a
single CPU thread not using any parallel processing.

5.2. Second Experiment: accuracy

Table4shows that thep-values for Ed versus Ed and Es versus Ed are all much larger than 0.05;
thus there is no evidence to suggest that the two Ed runs and Esand Ed were not equivalent.

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 15

(a) Total CUDA image in log scale.

–4

–3

–2

–1

0

1

2

3

4

σ

(b) Totalxi j , C versus Ed.

Figure 5. (a) The total image of the CUDA simulation in a log scale. (b) Thenormalized
differencesxi j in units of standard deviation between CUDA (C) and EGSnrc indouble precision
(Ed) in the total image.

This means that running EGSnrc in single precision introduces no measurable errors. The
same goes for the scatter images (Compton, Rayleigh and multiple scatter) of C versus Ed and
C versus Es. Further, thep-values of the scatter images of C versus Es are higher than for C
versus Ed, indicating that our CUDA simulation is a bit closer to Es than Ed, which is to be
expected. However, in the primary and total images, we clearly reject the null hypothesis that
C and Ed or Es are equivalent.

Table5 shows that the means of thexi j ’s were mostly of the order 10−3 or smaller while
only two were of order 10−2. The means of the differences between the two Ed runs tended to
be smaller than those between C and Ed. The standard deviations of thexi j ’s were about the
same in all cases and close to 1. Mostα ’s were less than or close to 1%, indicating that only
very few pixels had systematic deviations, which were mostly less than or about 2 standard
deviations. Most values ofω2 were about the same. Generally, the fit seemed to be better for
the scatter images and worse for the primary and total images. The values ofω2 tended to be
higher for C versus Ed, indicating that the fit was slightly worse for those differences.

A closer look at the analysis parameters for Ed versus Ed (table 5(b)) reveals thatα1 ≈ α2

and∆1 ≈ −∆2 for all five images. This means that the differences were about symmetrically
distributed around 0, but their spread was slightly higher than that of the normal distribution.
This can also be seen from the fact that the means were very close to 0 and the standard
deviations were slightly larger than 1. It was found that thestandard deviations, and thus the
spread, decreased with increasing number of batches. We canthus conclude that the two Ed
runs did produce statistically equivalent results for all images and the slightly higher spread
of the differences arose from a small underestimation of thestatistical uncertainty∆Φi j due to
the relatively small sample size (Nbatch= 20).

The differences between C and Ed (table5(a)) in the scatter images presented a very
similar picture. The differences were approximately symmetric and on the same order as for
Ed versus Ed, as was the goodness of the fit. The primary image from C versus Ed showed the
largest deviation from a standard normal distribution, which was also reflected in the total

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 16

image. Almost 4% of the pixels had a negative systematic deviation of about 1 standard
deviations, while almost no pixels had a positive deviation. This means that CUDA tended
to underestimate the energy fluence compared to Ed in the primary image, which also led to
the relatively large negative mean difference. Since we areseeingp-values that are also very
small for C versus Es in the primary and total images, we cannot attribute these differences to
the fact that CUDA used single precision. So these systematic differences must be due to the
different RNG that was used in CUDA. Further investigation would be necessary to determine
which of the two generators produced the ‘correct’ results.But in any case, even though there
are measurable systematic differences, these differencesare very small. The average combined
statistical uncertainty in the primary image was only about1.7% of the average energy fluence,
so about 4% of the pixels had a systematic difference of less than 2% (1.1×1.7%= 1.87%),
which gives an overall systematic difference of less than 0.08% (4%×2%= 0.08%).

The fit in figure4(a) seems to be quite good even though this one had the largestvalue
for ω2. Furthermore, despite the largest systematic deviation for this image, the measured
distribution was still close to the Gaussian. As seen in the analysis, the fit for Ed versus Ed
in the primary image (figure4(b)) is closer to the Gaussian and it fits the data also quite well.
Figure4(c) shows that there are more negative differences between Cand Ed than between Ed
and Ed, again indicating that C slightly underestimated Ed in the primary image. For the total
image (figure4(d)), the agreement is better.

The spatial distribution of the differences between C and Edin the total image (figure5(b))
appears completely random. There are no visible structuresin spite of the fact that there are
sharp discontinuities in the result image (figure5(a)). The largest systematic difference was
found in the primary image which corresponds to the bright area around the cylinder, but this
systematic difference is not visible in the difference image at all, thus implying that it is much
smaller than the statistical uncertainty.

6. Conclusion

Our proposed CUDA implementation of EGSnrc achieves a speedup of 20 to 40 times over
the conventional CPU implementation of EGSnrc in single or double precision for phantoms
consisting of 643 to 2563 voxels. This speedup is similar to what others (e.g. Badal and Badano
(2009)) have found for x-ray Monte Carlo simulations. Multiple GPUs can be used to split up
the workload and thus further reduce the simulation time. CUDA also has the advantage that
it scales very well to newer hardware. Our implementation iseasily portable to newer and
faster video cards. Only a few simple parameters have to be adjusted to optimize our code for
a different GPU and take full advantage of its capabilities.

We have also found that running EGSnrc in single precision only produces a very small
speedup compared to double precision and there are no measurable differences. In the scatter
images (Compton, Rayleigh and multiple scatter), our CUDA simulation is equivalent to
EGSnrc in double precision. In the primary and total images,we found a measurable overall
systematic difference of less than 0.08%, which cannot be attributed to the fact that CUDA
used single floating-point precision.

The idea of dividing the simulation of a history into steps and performing the same steps
in parallel in different threads to avoid warp divergence can be extended to the transport of
electrons. In that case, an additional mechanism is needed to have multiple particles on the
stack. While this will be more complex, a speedup over EGSnrc can still be expected. Even
without electron tracking, dose scoring can be accommodated by estimating the dose from the
photon energy deposited in each voxel. Such a method may produce acceptable results in the
diagnostic energy range if the voxels are not too small.

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

GPU implementation of EGSnrc’s Monte Carlo photon transport 17

Acknowledgements

This work was supported by funding from the CancerCare Manitoba Foundation. The authors
thank Dr Harry Ingleby for helpful discussions and feedbackand Dr H C Wolfart for valuable
editorial comments.

References

Alerstam E, Svensson T and Andersson-Engels S 2008 Parallelcomputing with graphics processing units for high-
speed Monte Carlo simulation of photon migrationJ. Biomed. Opt.13 060504

Andreo P 1991 Monte Carlo techniques in medical radiation physicsPhys. Med. Biol.36 861–920
Badal A and Badano A 2009 Accelerating Monte Carlo simulations of photon transport in a voxelized geometry

using a massively parallel graphics processing unitMed. Phys.36 4878–80
Bielajew A F and Rogers D W O 1993 Variance Reduction TechniquesNRC Report PIRS-0396Institute for National

Measurement Standards, National Research Council, Ottawa,Canada
http://rcwww.kek.jp/research/egs/docs/pdf/nrc-pirs0396.pdf

Blythe D 2008 Rise of the Graphics ProcessorProc. IEEE96 761–78
Després P, Rinkel J, Hasegawa B H and Prevrhal S 2008 Stream processors: a new platform for Monte Carlo

calculationsJ. Phys.: Conf. Ser.102 012007
Gu X, Choi D, Men C, Pan H, Majumdar A and Jiang S B 2009 GPU-basedultra-fast dose calculation using a finite

size pencil beam modelPhys. Med. Biol.54 6287–97
Gulati K and Khatri S P 2009 Accelerating statistical statictiming analysis using graphics processing unitsAsia and

South Pacific Design Automation Conf., ASP-DAC 2009pp 260–5
Hissoiny S, Ozell B, Bouchard H and Després P 2011 GPUMCD: A new GPU-oriented Monte Carlo dose calculation

platformMed. Phys.38 754–64
Januszewskia M and Kostur M 2010 Accelerating numerical solution of stochastic differential equations with CUDA

Comput. Phys. Commun.181 183–8
Jia X, Gu X, Sempau J, Choi D, Majumdar A and Jiang S B 2010 Development of a GPU-based Monte Carlo dose

calculation code for coupled electron-photon transportPhys. Med. Biol.55 3077–86
Kawrakow I and Fippel M 2000 Investigation of variance reduction techniques for Monte Carlo photon dose

calculation using XVMCPhys. Med. Biol.45 2163–83
Kawrakow I, Mainegra-Hing E, Rogers D, Tessier F and WaltersB 2010 The EGSnrc Code System: Monte Carlo

Simulation of Electron and Photon TransportNRC Report PIRS-701Ionizing Radiation Standards, National
Research Council, Ottawa, Canada
http://irs.inms.nrc.ca/software/egsnrc-V4-2.3.1/documentation/pirs701/

Kawrakow I, Mainegra-Hing E, Tessier F and Walters B 2009 TheEGSnrc C++ class libraryNRC Report PIRS-898
(rev A)Ionizing Radiation Standards, National Research Council,Ottawa, Canada
http://irs.inms.nrc.ca/software/egsnrc-V4-2.3.1/documentation/pirs898/

Kirkby D R and Delpy D T 1997 Parallel operation of Monte Carlosimulations on a diverse network of computers
Phys. Med. Biol.42 1203–8

L’Ecuyer P and Simard R 2007 TestU01: A C library for empirical testing of random number generatorsACM Trans.
Math. Softw.33 Article 22 / 1–40

Linz P 1970 Accurate floating-point summationCommun. ACM13 361–2
Lippuner J, Elbakri I A, Cui C and Ingleby H R 2011 Epp: A C++ EGSnrc user code for x-ray imaging and scattering

simulationsMed. Phys.38 1705–8
Lo W C Y, Han T D, Rose J and Lilge L 2009 GPU-accelerated Monte Carlo simulation for photodynamic therapy

treatment planningProc. SPIE 7373SPIEp 737313
Matsumoto M and Nishimura T 1998 Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom

number generatorACM Trans. Modeling Comput. Simul.8 3–30
Matsumoto M and Nishimura T 2000 Dynamic creation of pseudorandom number generatorsMonte Carlo and

Quasi-Monte Carlo Methods 1998Springer Berlin pp 56–69
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dc.html

Men C, Gu X, Choi D, Majumdar A, Zheng Z, Mueller K and Jiang S B 2009 GPU-based ultrafast IMRT plan
optimizationPhys. Med. Biol.54 6565–73

NVIDIA 2010a NVIDIA CUDA C Best Practices Guide Version 3.1NVIDIA Corporation
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/

NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf

NVIDIA 2010b NVIDIA CUDA C Programming Guide Version 3.1.1NVIDIA Corporation
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/

NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

http://dx.doi.org/doi:10.1117/1.3041496
http://dx.doi.org/10.1088/0031-9155/36/7/001
http://dx.doi.org/10.1118/1.3231824
http://rcwww.kek.jp/research/egs/docs/pdf/nrc-pirs0396.pdf
http://dx.doi.org/10.1109/JPROC.2008.917718
http://dx.doi.org/10.1088/1742-6596/102/1/012007
http://dx.doi.org/10.1088/0031-9155/54/20/017
http://dx.doi.org/10.1109/ASPDAC.2009.4796490
http://dx.doi.org/10.1118/1.3539725
http://dx.doi.org/10.1016/j.cpc.2009.09.009
http://dx.doi.org/10.1088/0031-9155/55/11/006
http://dx.doi.org/10.1088/0031-9155/45/8/308
http://irs.inms.nrc.ca/software/egsnrc-V4-2.3.1/documentation/pirs701/
http://irs.inms.nrc.ca/software/egsnrc-V4-2.3.1/documentation/pirs898/
http://dx.doi.org/10.1088/0031-9155/42/6/016
http://dx.doi.org/10.1145/1268776.1268777
http://dx.doi.org/10.1145/362384.362498
http://dx.doi.org/10.1118/1.3555296
http://dx.doi.org/10.1117/12.831944
http://dx.doi.org/10.1145/272991.272995
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dc.html
http://dx.doi.org/10.1088/0031-9155/54/21/008
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_BestPracticesGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf
http://developer.download.nvidia.com/compute/cuda/3_1/toolkit/docs/NVIDIA_CUDA_C_ProgrammingGuide_3.1.pdf

GPU implementation of EGSnrc’s Monte Carlo photon transport 18

Pratx G and Xing L 2011 GPU computing in medical physics: A review Med. Phys.38 2685–97
Preis T, Virnau P, Paul W and Schneider J J 2009 GPU accelerated Monte Carlo simulation of the 2D and 3D Ising

modelJ. Comput. Phys.228 4468–77
Raeside D E 1976 Monte Carlo principles and applicationsPhys. Med. Biol.21 181–97
Rogers D W O 2006 Fifty years of Monte Carlo simulations for medical physicsPhys. Med. Biol.51 R287–301
Saito M 2010 A Variant of Mersenne Twister Suitable for Graphic Processors arXiv:1005.4973v2[cs.MS]
Salvat F, Fernández-Varea J M and Sempau J 2006PENELOPE-2006: A Code System for Monte Carlo Simulation

of Electron and Photon TransportOECD Nuclear Energy Agency Issy-les-Moulineaux, France
http://www.oecd-nea.org/science/pubs/2006/nea6222-penelope.pdf

Sempau J, Wilderman S J and Bielajew A F 2000 DPM, a fast, accurate Monte Carlo code optimized for photon and
electron radiotherapy treatment planning dose calculations Phys. Med. Biol.45 2263–91

Shiraki A, Takada N, Niwa M, Ichihashi Y, Shimobaba T, Masuda Nand Ito T 2009 Simplified electroholographic
color reconstruction system using graphics processing unit and liquid crystal display projectorOpt. Express
17 16038–45

Verhaegen F and Seuntjens J 2003 Monte carlo modelling of external radiotherapy photon beamsPhys. Med. Biol.
48 R107–64

Woodcock E, Murphy T, Hemmings P and Longworth S 1965 Techniques used in the gem code for monte carlo
neutronics calculations in reactors and other systems of complex geometryProc. Conf. on Applications of
Computing Methods to Reactor Problems (Argonne National Laboratories Report ANL-7050)p 557

J Lippuner and I A Elbakri Phys. Med. Biol.56 (2011) 7145–7162

http://dx.doi.org/10.1118/1.3578605
http://dx.doi.org/10.1016/j.jcp.2009.03.018
http://dx.doi.org/10.1088/0031-9155/21/2/001
http://dx.doi.org/10.1088/0031-9155/51/13/R17
http://arxiv.org/abs/1005.4973
http://www.oecd-nea.org/science/pubs/2006/nea6222-penelope.pdf
http://dx.doi.org/10.1088/0031-9155/45/8/315
http://dx.doi.org/10.1364/OE.17.016038
http://dx.doi.org/10.1088/0031-9155/48/21/R01

	Abstract
	1 Introduction
	2 Background
	2.1 The CUDA architecture
	2.2 Functionality of EGSnrc

	3 Methods
	3.1 Implementation with CUDA
	3.1.1 Parallelization of the simulation
	3.1.2 Simulation overview
	3.1.3 Simulation kernel
	3.1.4 Summing kernel
	3.1.5 Random number generator

	3.2 Computational experiments
	3.2.1 Simulation setup and hardware
	3.2.2 First experiment: speedup
	3.2.3 Second experiment: accuracy

	4 Results
	4.1 First experiment: speedup
	4.2 Second experiment: accuracy

	5 Discussion
	5.1 First experiment: speedup
	5.2 Second Experiment: accuracy

	6 Conclusion
	Acknowledgements
	References

