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1. Early Aftermath of Einstein�s Theory of Relativity
Imagine that it is early 1918, a little more than two years since Einstein�s announcement of the theory

of general relativity. Karl Schwarzschild, a German physicist (and, tragically, a fatality on the front line of
the Great War), has already shown that Einstein�s equations predict the previously unexplained perihelion
shift of Mercury exactly. In less than a year, the noted British scientist Arthur Eddington will make use of a
total solar eclipse to measure the de�ection of starlight by the sun, which will again con�rm the predictions
of general relativity. Ten years earlier, Einstein�s 1905 theory of special relativity had become accepted
scienti�c thought, and now even the lay public is excited about Einstein�s strange ideas of warped space and
relative time. There is no �force�of gravity, no action at a distance pulling one gravitating body to another.
Planets move in ellipses around the sun because warped space tells them how to move, and the sun�s gravity
tells space how to warp. As far as a planet is concerned, it�s moving in a straight line, doing the only thing
it knows how to do. Similarly, time isn�t what we think it is. The ticking rate of a wristwatch depends not
only on the wearer�s relative velocity to some observer, it is also a¤ected by gravity. Maybe time travel really
is possible! Einstein is on the cusp of becoming the world�s �rst scienti�c superstar.

For physicists everywhere, these are especially exciting times because the mathematics of general rela-
tivity promise new discoveries in other branches of physics. There are only two forces of nature known �
gravitation and electromagnetism �and now the �rst force has been explained. Is there any doubt that the
electrodynamic equations of Maxwell will also be explained as a geometric consequence of relativity�s strange
new mathematics?

The renowned German mathematician Hermann Klaus Hugo Weyl is already working along these lines.
He has written a paper that he believes demonstrates that electrodynamics, like gravitation, is a geometric
consequence of general relativity. Before the paper is submitted for publication, Weyl shows it to his friend
and colleague Einstein, who is initially ecstatic, perhaps in part because he senses yet another success for
his own theory. The paper is published in a respected scienti�c journal, Sitzungsberichte der Preussischen
Akademie der Wissenschaften, along with a brief addendum by Einstein. However, while he praises Weyl�s
theory, Einstein expresses his belief that, while elegant and beautiful, it cannot possibly describe reality.
Weyl desperately tries to repair things, but it is no good. Within a few years, the theory is dead.

And yet, in just another ten years, Weyl will resurrect his theory and be completely vindicated, albeit
in a way he never dreamed earlier. Not only that, his theory will become what can easily be called one of
the seminal concepts in 20th-century mathematical physics, helping to bring about a revolution in a �eld
of physics that Einstein never allowed himself to fully accept �quantum mechanics. And many years later,
Weyl�s ideas will provide future physicists a powerful tool in the successful development of theories that
describe two other fundamental forces in nature �the strong and weak interactions.

What exactly was Weyl�s theory? Why did it die o¤ in spite of the earnest praise of Einstein and other
noted physicists of the time? How was it reborn, and what signi�cance does it have for modern physics? In
the following, we�ll look at the theory and its implications, point out its problems, and leave it to the reader
to decide its signi�cance.

2. Notation
Elsewhere on this website you will �nd a description of the principles of general relativity, its mathematics

and the notation that it presupposes. As a reminder, note that partial derivatives are denoted by a single
subscripted bar while covariant derivatives are indicated by a double subscripted bar, so we have quantities
like A�j� = @A�=dx

� and F �
�jj� = @F�� =dx

� + F�� �
�
�� � F�� ���� , where ���� are coe¢ cients of connection, or

just connections. Please note that in Riemannian space, the connections reduce to the Christo¤el symbols:

���� = �
�
�
��

�
.
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3. The Idea of Gauge Invariance
It was observed long ago that Maxwell�s equations were invariant to a certain change in the electromagnetic

4-potential A�; that is, if we de�ne a new potential given by Â� = A� + fj�, where fj� is the gradient of
some scalar �eld f(x), then the electromagnetic �eld tensor, de�ned as F�� = A�j� � A�j�, is unchanged.
Thus, there is an arbitrary aspect to the potential that can often be exploited to simplify problems in
electrodynamics.

In 1918, Hermann Weyl attempted to formulate a new kind of gauge theory involving the metric tensor
g�� and the tensor formalism of general relativity and di¤erential geometry. In fact, Weyl himself coined the
term �gauge transformation,�likening it to a change in the scale of railroad tracks. Today, so-called �gauge
theories�have nothing to do with geometrical objects like g�� ; instead, they involve local phase changes in
quantum �elds [i.e.,  ̂ �! exp i�(x) ], which are fundamental in the description of the weak and strong
interactions. We can also thank Weyl for this development, which sprung from his �rst attempt to apply
such transformations to geometry (and which we summarize in the following).

4. Vector Magnitude in Riemannian Space
You may recall from some class in elementary math or physics that the square of the magnitude or length

of a vector ~� is de�ned by the dot product ~� � ~� = j�j 2. In tensor notation, we write this as

l 2 = g�� �
� �� (4.1)

where g�� is the symmetric metric tensor and �
�(x) is an arbitrary vector. If we take the total derivative of

this expression we get
2l dl = g��j� �

� ��dx� + g�� d�
� �� + g�� �

� d��

Using the identity d�� = ���� �
� dx� , and adjusting the indices somewhat, we have

2l dl = g��j� �
� �� + g�� �

�
�� �

� �� dx� + g���
�
�� �

� �� dx� = g��jj� �
� �� dx� (4.2)

where g��jj� is the covariant derivative of the metric tensor. In a Riemannian space this quantity vanishes
identically, so the change in vector magnitude dl is zero. From this expression we see immediately that the
quantity g��jj� alone determines whether vector magnitude is constant or variable.

Weyl wondered if Riemannian space might be altered in some way that would allow for a non-zero dl. While
thinking this over, he discovered that if the metric tensor g�� was �re-gauged�to �g�� then vector magnitude
would no longer be a constant. To see this, assume that the metric tensor undergoes the in�nitesimal change
of scale g�� �! (1+ "�)g�� , where �(x) is some function of the coordinates; that is, we de�ne a new metric
in Riemannian space in which ĝ�� = (1 + "�)g�� . The length of a vector in this new gauge is then

l̂ 2 = ĝ�� �
� �� = (1 + "�) l 2

Di¤erentiation now gives

2 l̂ dl̂ = "�j� g�� �
� ��dx� + (1 + "�)g��jj� �

��� dx�

= "�j� g�� �
� ��dx�

(Remember we�re still in Riemannian space, which is why g��jj� vanishes here.) Weyl now multiplied both
sides of this expression by l̂, giving

2 (1 + "�)g�� �
� �� dl̂ = "�j� g�� �

� ��dx� l̂

Because g�� �
� �� is arbitrary, we can divide this term out, giving (to �rst order in ")

2 (1 + "�) dl̂ = "�j� dx
� l̂ , or

dl̂ =
1

2
"�j� dx

� l̂ (4.3)

Weyl saw that a regauging of the metric in Riemannian space resulted in a non-zero dl̂. This was no big
deal in itself, but Weyl thought that an adjustment in Riemannian geometry might allow vector magnitude
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to vary from point to point without any regauging of the metric tensor. At the same time, Weyl knew
that the electromagnetic 4-potential A� of electrodynamics also allowed a kind of regauging (also called a
gauge transformation) that had no e¤ect on Maxwell�s equations (Maxwell�s equations are therefore gauge
invariant). The apparent similarity between a regauging of the metric and a gauge transformation of the 4-
potential seemed to Weyl to represent a potential means of unifying general relativity with electromagnetism.

Another consideration that Weyl made involves the integration of (4.3). Assume that the vector is trans-
ported around a closed loop; integration then gives

l̂ 2 = l̂ 20 exp["

I
�j� dx

�]

= l̂ 20 exp["

I
S

curl � dS ]

where we have used Stoke�s theorem. However, the curl of a gradient �eld is zero, so the length of a
�regauged�vector transported around a closed loop in Riemannian space is unchanged. Weyl believed that
a suitable generalization of Riemannian geometry might allow the gradient �j� to be replaced by a vector
�eld, leading to a much more interesting situation.

5. Vector Magnitude in a Weyl Space
To start, Weyl looked at the de�nition d�� = ���� �

� dx� and assumed that a change in vector magnitude
must obey a similar expression. He therefore assumed that

dl = �� dx
� l (5.1)

where ��(x) is a vector quantity of unknown origin that keeps dl from vanishing. Plugging this de�nition
for dl into (4.2), Weyl obtained

2l 2�� dx
� = g��jj� �

� ��dx� or

2g�� �� = g��jj� (5.2)

Therefore, the metric covariant derivative can be expressed in terms of the metric tensor and the �eld ��.
Since the metric covariant derivative is no longer zero, Weyl had the non-Riemannian space he needed. He
then considered the identity

g��jj� = g��j� + g�� �
�
�� + g���

�
��

and then wrote down the three expressions that result from a cyclic permutation of the indices �; � and �
in 2g�� �� and g��jj�:

2g�� �� = g��j� + g�� �
�
�� + g���

�
��

2g�� �� = g��j� + g�� �
�
�� + g���

�
��

2g�� �� = g��j� + g�� �
�
�� + g���

�
��

He then subtracted the �rst equation from the sum of the second and third, obtaining

g���
�
�� = �[��; �] + g�� �� + g�� �� � g�� ��

where the term in brackets is the Christo¤el symbol of the �rst kind. Contraction with g�� then left him
with

���� = �
�
�
��

�
+ ��� �� + �

�
� �� � g�� g�� �� (5.3)

where the term in curly brackets is the Christo¤el symbol of the second kind:�
�
��

�
=
1

2
g�� [g��j� + g��j� � g��j� ]
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Weyl therefore succeeded in deriving a non-Riemannian connection term that conveniently reduced to its
Riemannian counterpart when �� = 0.

Next, Weyl investigated what would happen to the connection ���� when the metric underwent a gauge
transformation. For simplicity, he considered the in�nitesimal transformation ĝ�� = exp("�) g�� , where "
is some small constant and �(x) is the gauge parameter. Thus, the metric tensor transforms like ĝ�� =
(1 + "�) g�� . To see how �� transforms, he recalled (4.3) for Riemannian space; he therefore determined

that, for � = exp("�), �̂� = �� +
1
2"�j�, or ��� =

1
2"�j�. It was now a simple matter for Weyl to show that

�̂��� = �
�
��

Therefore, the Weyl connection ���� is invariant with respect to arbitrary changes in the gauge. At this
point, Weyl must have felt that he was onto something. He still needed to investigate the consequences of
this new space (which we now call a Weyl space) with respect to general relativity and Maxwell�s equations,
but this was a great start.

6. Weyl�s Variational Principle
When Einstein initially developed his general theory of relativity, he was apparently unaware of what Pais

refers to as the �royal road�to the �eld equations. Recall that in free space Einstein�s �eld equations are

G�� = R�� �
1

2
g��R = 0 (6.1)

and not R�� = 0, as he �rst surmised (here, R�� is the Ricci tensor and R is the Ricci scalar, de�ned
as R = g��R��). Had Einstein known about the variational principle from the beginning, he would have
reached the above equation immediately. The principle I am referring to involves the fact that the quantity
I de�ned by

I =

Z p
�g R d4x

has its minimum value if and only if (6.1) holds. Recall the expression for R�� in a Riemannian manifold:

R�� =

�
�
��

�
j�
�
�
�
��

�
j�
+

�
�
��

��
�
��

�
�
�
�
��

��
�
��

�
If we vary I with respect to some arbitrary change in g�� , we easily �nd that

�I =

Z p
�g [R�� �

1

2
g��R ] �g

�� d4x (6.2)

Setting this equal to zero then gives Einstein�s free-space �eld equations, as asserted (if you�re curious as to
how this calculation is performed, see any introductory text on general relativity). Similarly, there exists a
variational principle for Maxwell�s equations in charge-free space, which starts with the quantity

I =

Z p
�g F��F�� d4x

where F�� = A�j� �A�j� is the antisymmetric electromagnetic �eld tensor, which in Cartesian matrix form
looks like

F�� =

2664
0 �Ex �Ey �Ez
Ex 0 �Bz By
Ey Bz 0 �Bx
Ez �By �Bx 0

3775
In this case, we have two quantities we can vary under the integral. The �rst is g��(which is contained inp�g and in the contravariant form of F��), and the other is A�. If we vary

p�g F��F�� with respect to
g�� , we get the energy-momentum tensor

T�� = g�� F��F�� �
1

4
g��F��F

�� (6.3)
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which is traceless (g��T�� = 0), whereas variation with respect to A� leads to

[
p
�g F�� ]j� = 0

which expresses the fact that the electromagnetic source density is zero for charge-free space. The latter
equation results from what we refer to as a gauge variation �A�, while the former result comes about from
taking the metric variation �g�� . Noether�s theorem (which is a fantastic discovery in its own right) states
that the variational principle associates symmetries (invariances with respect to �g�� , �A� and the like)
with conservation laws (I�ll have to write up something someday about Emmy Noether, whose 1918 theorem
showed once and for all that female mathematicians could work with the best of them).

Anyway, Weyl must have had a brainstorm at this point. He would combine the Einstein and Maxwell
scalar densities into a single integral formula, do the variations with respect to �g��and �A�, and see if the
resulting equations corresponded to reality. Hopefully, this would show that electodynamics, like gravitation,
was a geometrical construct. But he ran into a problem before he could set pencil to paper. The problem
has to do with what we now call gauge weights of tensor densities, which I�ll explain now.

You may recall two important aspects of the integrands we employ in variational principles: one, they must
be scalars, and thus not dependent on any particular coordinate system (that�s the whole idea of relativity!);
and two, they must be scalar densities, which is why the

p�g appears (the combination p�g d4x is itself
invariant with respect to coordinate change). This should all be very familiar material to you, but the
concept of gauge weight may not be. Gauge weight is a number that is associated with the number of times
the quantity g�� appears in the integrand, either explicitly or implicitly. The most important example isp�g itself (the minus sign is unimportant, another fact you should already be familiar with). Recall the
de�nition of g, which is the determinant of the metric tensor g�� (or metric matrix, as you may want to think
of it). In four-dimensional Cartesian space we have g = �g00 g11 g22 g33; g therefore has a gauge weight of 4,
so
p�g has a weight of exactly 2. In three dimensions, p�g would have a gauge weight of 3/2, etc. Similarly,

each occurrence of g�� is counted as a weight of �1. If we rescale the metric tensor with the in�nitesimal
gauge factor "�, then "� becomes the �counter.�Thus, �g�� = "�, while �g�� = �"�. Some quantities have
no gauge weight; for example, �� has no gauge weight because ��� = 1=2 "�j� is not a multiple of the gauge
parameter ��. All of this is due to Weyl.

Another example is the quantity
p�g F��F�� =

p�g F��g��g��F�� , which has a gauge weight of zero in
four-dimensional space. In any other dimension, it is non-zero. Weyl believed that because the electromag-
netic scalar density is of zero weight, then all physically-relevant tensor quantities should also have zero gauge
weights. This is an appealing idea, and it also gives a special emphasis to four-dimensional space. In 1918, it
is doubtful that anyone had even considered the possibility of spacetimes having more than four dimensions,
so Weyl�s rationale was certainly valid at the time (the �ve-dimensional theories of Kaluza and Klein didn�t
appear until the mid-1920s). Consequently, Weyl required that his variational principle be based upon a
weight-zero scalar density. In Weyl�s geometry, the Ricci scalar is R = eR + 6g������ � 6g����jj� , whereeR is the scalar�s form in ordinary Riemannian space. But wait! The scalar density that leads to Einstein�s
equations is

p�g R, which is of gauge weight 1 (remember that the weight of R�� in Weyl�s geometry is
zero). Consequently, it is unsuitable because it is not gauge invariant. After some thought, Weyl decided
that he would use the square of the Ricci scalar R to balance things out (there are other quantities, including
R���� R

���� , that he could have used, but R 2 is certainly the simplest). Also, we may reason that, since
F��F

�� is the �square�of F�� , we should use a quadratic form for the Ricci scalar as well. So Weyl went
with the quantity

I =

Z p
�g [R2 +AF��F�� ] d4x (6.4)

in his variational principle, where A is some constant (in what follows, it turns out that A = 6 is a convenient
choice, and it�s the one I have used).

Before we launch into Weyl�s integral, we�ll need to know a few identities in Weyl space. Using the fact
that g��jj� = 2g����, it is a simple matter to show that the contravariant covariant derivative is g

��
jj� =

�2g����. The metric determinant also has a non-zero covariant derivative, which is (
p�g)jj� = 4

p�g ��.
Furthermore, partial derivatives of vector densities are numerically the same as their covariant counterparts,
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so (
p�g ��)jj� = (

p�g ��)j�, a fact that will be of use when we do integration by parts under the integral
sign (actually, this second identity holds in Riemannian space as well).

I�m going to tell you right now that passing the variational operator � for g�� and �� through the Weyl
integral is a major pain in the neck. The process is straightforward, but it�s tedious and prone to error if
you don�t get things right all the way through (Mathematica has a tensor package that might make short
work of this problem, but I haven�t tried it). The main headache is the fact that you�ve got to integrate by
parts many times, and the potential for making simple algebraic errors is always present. After about half
an hour my calculations are several pages long but, fortunately (and very typical of tensor problems), terms
start cancelling out all over the place, leaving a relatively simple answer. (Historical note: Weyl used a kind
of round-about approach in which he initially set R equal to a constant, then corrected for it at the end of
his calculations. It�s rather tough to follow, but the results are identical to what follows below, so I suppose
he knew what he was doing.) For brevity�s sake (and my own, as I don�t like typesetting all this stu¤), I
will just write down the results. We end up with

�I =

Z p
�g [W�� �g

�� + S����] d
4x

where W�� and S� are coe¢ cients of the indicated variations. Setting each of these to zero, we �nd that

p
�g S� = [

p
�g F�� ]j� =

p
�gg�� [R�� +

1

2
Rj� ] (6.5)

and
g��W�� = 2 g

�� [R���� +Rj��� +
1

2
R��jj� +

1

4
Rj�jj� ] = 0 (6.6)

(the latter calculation also generates the energy-momentum tensor T�� , but this vanished when I contracted
with g��).

As you are probably aware, the quantity [
p�g F�� ]j� appears in Maxwell�s equations, where it is equal

to
p�g S�, the electromagnetic source density. Equation (6.5) implies that the electromagnetic source is

derivable from purely geometric quantities. You are also no doubt aware that the divergence of this quantity
is zero, re�ecting the fact that electromagnetic charge is conserved. Does Weyl�s theory provide for this?
Amazingly, it does. To see this, let�s take the divergence of (6.5) with respect to the remaining variable �:

[
p
�g F�� ]j�j� = f

p
�gg�� [R�� +

1

2
Rj� ]gjj�

= 2
p
�gg�� [R���� +Rj��� +

1

2
R��jj� +

1

4
Rj�jj� ]

The �rst term is zero because F�� is completely antisymmetric in its indices, so it gets wiped out by
the symmetric double partial derivatives. The term on the right side is just (6.6), which also vanishes.
Consequently, Weyl�s expressions are fully consistent with Maxwell�s equations. To me, this is a truly
beautiful aspect of the Weyl theory.

Another way of obtaining this result is to let �g�� and ��� represent variations of the gauge, where
�g�� = �"�g�� and ��� = 1=2 "�j�. We then have

�I =

Z p
�g [�W�� �g

�� +
1

2
S��j�] " d

4x

=

Z
[�
p
�g g��W�� �

1

2
(
p
�gS�)j�] "� d4x

where we have integrated by parts over the last term in the integrand. Setting this to zero, we get the same
results as before.

But there�s more. In the variation of (6.4) with respect to g�� , the full expression that obtains is

p
�g [�1

2
g��R

2 + 2RR�� � 8 g��g��R���� + 8R���� + 8Rj��� � 8 g��g��Rj���
�2g��g��Rj�jj� � 4 g��g��R��jj� + 2Rj�jj� + 4R��jj� ] �g�� = 0
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Dividing out �g��and contracting with g�� gives (6.6). Now let us assume that space is Riemannian after
all, so that �� = 0. We then get

�1
2
g��R

2 + 2RR�� � 2g��g��Rj�jj� + 2Rj�jj� = 0

Contraction with g��shows that g��Rj�jj� = 0, leaving us with

R [R�� �
1

4
g��R] +Rj�jj� = 0 (6.7)

Compare this (Weyl�s equation with �� = 0) with the Einstein free-space equation:

R�� �
1

2
g��R = 0

The similarity is there, but there there�s also something else. You might know that Einstein searched for
an equation that, like the energy-density equation for the electromagnetic �eld (6.3), is traceless. Weyl�s
equation is traceless; multiply (6.7) by g�� and see for yourself. However, Einstein�s equation is divergenceless,
however, whereas Weyl�s is not. Nevertheless, it is instructive to note that Weyl�s equation (6.7) reproduces
all of the predictions that general relativity makes via Einstein�s equation, and it may indicate even more
(the next part is where I really stick my neck out).

If you�re familiar with Schwarzschild�s solution of Einstein�s free-space �eld equations, you should have no
trouble reproducing them using (6.7). First, assume that the invariant line element in spherical coordinates
can be written as

ds2 = e�(r)(dx0)2 � e�(r) dr2 � r2d�2 � r2 sin2 � d�2

I will just give you the answer, because I�m too lazy to write out all the expressions for R�� , etc. It is

e� = 1� 2m
r
+
R

12
r2

e� = (1� 2m
r
+
R

12
r2)�1 (6.8)

R = constant

This is just the Schwarzschild solution with an additional term proportional to R (which in the Einstein
case is zero). If we set R = 0 in Weyl�s equation, all of the predictions that general relativity makes are
reproduced. If we retain R, on the other hand, we get a repulsive acceleration factor due to the r2R=12
term, which tends to counteract the attractive force of gravity. Many years ago Cartan showed that the
most general form of Einstein�s equations for free space is

R�� �
1

2
g��R+ �g�� = 0

where � is the cosmological constant, known to be a very small number (perhaps zero). The solution to
Cartan�s equations is just (6.8), where R = �4�. Therefore, the acceleration term in Weyl�s theory must
be very small. Could it have anything to do with the observed repulsive force that seems to permeate all
space? (I told you I was sticking my neck out).

7. Problems with Weyl�s Theory
Now for the bad part. Weyl�s theory was struck down, by Einstein no less, and it never really took hold,

in spite of the fact that everyone thought it was an elegant and beautiful idea. What happened?

Einstein�s objection to the theory can be traced to (5.1). If we integrate this, we get

l = l0 exp

Z
�� dx

� (7.1)

where l0 is the length a vector would have in the absence of the �� �eld. Einstein noted that vector length
could be made proportional to the ticking of a clock (from the dx0 part of the integral). If �� varies from
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point to point in space, the clock�s setting would change more and more with time. The spacing of atomic
spectral lines, for example, would depend on their history and be subject to change, with unpredictable (and
probably disastrous) results. Since this is not the case, Einstein declared Weyl�s theory to be unphysical.

There�s another problem, one that I feel is more critical. Recall Weyl�s de�nition of the metric covariant
derivative,

g��jj� = 2g����

In view of this de�nition, consider the fact that there are vectors whose magnitudes are absolute (the
Compton wavelength of the electron, for example), so any theory that changes their magnitude would be
nonsensical. Unfortunately, Weyl�s theory cannot distinguish absolute vectors from variable-length vectors.
To make this quantitative, consider the line element as an example of an absolute vector:

ds2 = g��dx
�dx� , or

1 = g���
���

where �� is the unit vector dx�=ds (we assume that d��=ds = �����
��� is non-zero; after all, this represents

the geodesic equations!). Taking the total derivative of this like we did earlier, we get

0 = g��jj��
���dx�

= g��jj��
�����

Therefore, either the metric covariant derivative g��jj� is identically zero, or it satis�es the peculiar cyclic
symmetry condition

g��jj� + g��jj� + g��jj� = 0 (7.2)

Clearly, Weyl�s de�nition g��jj� = 2g���� does not satisfy this condition. Yet (7.2) is obviously valid,
indicating that the Weyl theory is not even consistent with elementary tensor calculus. So where do we go
from here?

First of all, let�s try to clear up Einstein�s objection. It�s no big deal; if the term exp
R
�� dx

� must be
a constant to keep vector magnitude from changing, then let�s just make it a constant. To be precise, let�s
assume (like we did earlier) that the vector is moved around a closed path. Then we can setI

��dx
� = 2�in (7.3)

Remembering that exp 2�in = 1, this makes l invariant, albeit at the expense of making �� an imaginary
quantity (can you now see why Weyl�s theory might have application in quantum mechanics?). In fact, we
can take this argument even further by appealing to the Bohr model of the hydrogen atom. Following Adler
et al. (the original idea is due to the German physicist F. London), we consider an electron in the static
spherical �eld of a proton which consists of the non-zero Weyl potential �0 (�i = 0). A single planetary
electron circles the proton, making a complete circuit in the time t. The electron�s velocity is therefore
v = 2�r=t, where r is the Bohr radius. Equating electrostatic and centrifugal forces, we have

mv2

r
=

e2

4��0 r

where the proton�s classical electric potential, A0 = e=4��0r, has been used. Using (7.1), we haveI
�0(r) dx

0 = �0

I
c dt = 2�in

so that, for one electron orbit, t = 2�in=c�0. Putting all this together, we can derive the formula for the
Bohr radius

r =
�0 n

2h2

�me2

if we make the identi�cation

�0 =
ie

�hc
A0
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This simple argument demonstrates that there is reason to associate Weyl�s �� �eld with the electromagnetic
4-potential after all. Note also that Stoke�s theorem allows us to writeI

�� dx
� =

Z
S

curl � dS

so this integral can vanish only if the curl of �� (which is F��) is zero, again indicating a connection with
electrodynamics. However, the appearance of an imaginary potential ie=�hcA� makes us wonder if we�re
not barking up the wrong tree. After all, Planck�s constant �h shows up in quantum theory, not geometry.
London felt the same way, and in 1927 suggested that Weyl�s gauge theory might �nd a happier home in
quantum mechanics. Weyl immediately recognized that this was indeed the case, and in 1929 he published
a paper in Zeitschrift für Physik that established the connection once and for all (Weyl�s 1929 paper will be
the subject of a future discussion on this site).

So much for Einstein�s remark. Now let�s have a look at (7.2), which Weyl�s manifold does not obey.
Is there any way it can be �xed? The o¤ending equation is Weyl�s prescription for the metric covariant
derivative, g��jj� = 2g����. Let�s consider this expression for a moment.

Since g�� is a symmetric tensor, in n-space it has a total of n(n+1)=2 distinct terms. The �eld �� is just
a vector and has just n terms. Therefore, in Weyl�s geometry the metric covariant derivative has a total of
n2(n + 1)=2 terms. Now consider the cyclic expression (7.2). The metric tensor g�� is still symmetric, but
now the quantities g��jj� (no sum) are zero. Careful consideration of the symmetry properties in (7.2) shows
that g��jj� has only n(n2� 1)=3 distinct terms. Thus, the quantity g��jj� must be a much di¤erent creature
than the one Weyl came up with.

Pursuing this further, let�s now do something that Weyl might have considered, but didn�t. Let us contract
(5.2) with g�� ; this gives us the new identity

�� =
1

2n
g��g��jj� (7.4)

Notice that if this quantity had been given from the start, basic tensor analysis would forbid its �uncontrac-
tion�back to (5.2), although �� (whatever it might be) can still be used to de�ne a non-vanishing metric
covariant derivative. However, while Weyl�s �� �eld no longer violates (7.2), we seem to have lost our simple
de�nition for g��jj�. To get it back, notice that, in view of (7.2), we can also express (7.4) as

�� = � 1
n
g��g��jj�

=
1

n
g ��jj�g��

Contracting this expression through with g�� leads us to

g ��jj� = n g ����

This equation implies that the metric covariant derivative can be expressed in terms of the metric tensor
and �� (somewhat like Weyl�s original recipe). We therefore venture to guess that the necessary de�nition
for g��jj� goes like

g��jj� = Ag���� +B g���� + C g����

where A, B and C are constants. Using the fact that g�� is symmetric, we see immediately that B = C.
Consideration of the cyclic symmetry in (7.2), and contracting with g�� shows that the unique solution is

g��jj� =
2n

n� 1 g���� �
n

n� 1 g���� �
n

n� 1 g���� (7.5)

where n is the dimension of spacetime. Similarly, we have

g��jj� =
n

n� 1�
�
� g

���� +
n

n� 1�
�
� g

�� �� �
2n

n� 1g
���� (7.6)
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Earlier we showed how Weyl derived his connection ���� by adding and subtracting cyclic permutations for
the expanded form of g��jj�. The exact same procedure for the revised g��jj� de�nition shows that we must
now write

���� = �
�
�
��

�
� g��jj�g�� (7.7)

= �
�
�
��

�
+

n

n� 1�
�
� �� +

n

n� 1�
�
� �� �

2n

n� 1g�� g
�� �� (7.8)

Well, this is troublesome. Not only is it distinctly di¤erent from Weyl�s de�nition, but a straightforward
gauge transformation of this quantity using ��� = 1=2 "�j� reveals that it is not gauge invariant for any
choice of n (although the contracted form ���� is gauge invariant). Be this as it may, Schrödinger has shown
that the most general symmetric connection that is at all possible has the form

���� = �
�
�
��

�
�B��� g��

where B��� is a special rank-three tensor that has precisely the same symmetry properties as g��jj� . Con-
sequently, the revised connection is at least partially justi�ed. It would be interesting to know how Weyl
would have responded to this.

At any rate, this is as far as we can take things without really going o¤ the deep end. While it is still
possible to �nd a tensor quantity T in the revised Weyl geometry such that the combination

p�gT 2 is
gauge invariant, it doesn�t provide any more insight than the original Weyl theory. In fact, this same T
quantity has almost exactly the same form as (6.5), and also has zero divergence. But of course, this is
only a consequence of Noether�s theorem, and nothing more (the theorem guarantees that symmetries will
produce conservation laws, but doesn�t guarantee that they�re physically meaningful!). Perhaps there is an
in�nite number of such quantities, which are initially appealing but really signify nothing.

And that may be the biggest problem with Weyl�s theory �in spite of the neat mathematics, it just doesn�t
predict anything that can be checked experimentally. Like many uni�ed �eld theories, it may only be empty
formalism. Be that as it may, it�s still a beautiful mathematical edi�ce, and for that reason alone it�s worth
knowing about.

8. End of the Story
I think that�s enough for now. I hope you have found this interesting, if only as a glimpse into what was

probably the very �rst uni�ed �eld theory. I encourage you to look at how Weyl carried the gauge concept
over to quantum mechanics, where it made an enormous and lasting contribution to theoretical physics. It
also set the stage for a revolution in the physics of the strong and weak interactions, where Weyl�s idea
evolved into what is called the principle of local gauge invariance. This gauge principle is now believed to
lie at the heart of all of physics. Weyl re�ected on his gauge theory not long before his death in 1955, when
he wrote:

The principle of general relativity had resulted above all in a theory of the gravitational �eld.
While it was not di¢ cult to adapt also Maxwell�s equations of the electromagnetic �eld to this
principle, it proved insu¢ cient to reach the goal at which classical �eld physics is aiming: a
uni�ed �eld theory deriving all forces of nature from one common structure of the world and
one uniquely determined law of action. [I attempted] to attain this goal by a new principle
which I called gauge invariance (Eichinvarianz ). This attempt has failed. There holds, as we
now know, a principle of gauge invariance in nature; but it does not connect the electromagnetic
potentials ��; as I had assumed, with Einstein�s gravitational potentials g�� , but ties them to the
four components of the wave �eld  by which Schrödinger and Dirac taught us to represent the
electron. Of course, one could not have guessed this before the �electron �eld� was discovered
by quantum mechanics!

Praise God for creating such a wonderful universe, and for giving us thoughtful geniuses like Hermann
Weyl!
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